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ABSTRACT 

Experimental vapor and liquid phase compositions are presented for 

the binary system normal hydrogen-helium, covering the temperature range 

15.50-32.50°K and pressures up to 500 psia. 

located in the temperature range 30.6-32.5"K. 

tem, as described by P-x, T-x, and P-T plots, is typical of binary 

The critical curve is 

The behavior of the sys- 

systems in which the critical points are far apart. 

The experimental equipment consists of a vapor recirculating equi- 

librium system with a vapor pressure controlled liquid hydrogen bath. 

Temperatures have been controlled to within +0.02'K, or better, and 

measured with a platinum resistance thermometer. Pressures have been 

measured to within kO.5 psi with a 0-500 psig calibrated 16 inch Heise 

Gage. A detailed description of the construction and operation of the 

equipment is included. 

A comparison of the experimental results with previous work is 

given, and conflicts in existing data are resolved. The problems of 

rigorous thermodynamic analysis of the data are briefly discussed. 

xiii 
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I. INTRODUCTION 
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A. GENERAL 

Hydrogen and helium are the l i g h t e s t  known elements, having molec- 

u l a r  weights of 2 02 and 4.00 respec t ive ly .  

b o i l i n g  temperatures of a l l  known substances.  

They have t h e  lowest normal 

Pure hydrogen l i q u e f i e s  a t  atmospheric pressure  a t  a temperature 

of 20.4"K (-423.2"F), and under varying vapor pressures  it e x i s t s  a s  

a l i q u i d  from i t s  t r i p l e  point  a t  1 3 . 8 " ~  t o  i t s  c r i t i c a l  temperatwe 

of 32.9'K. A t  20.4" t h e  

l i q u i d  has a dens i ty  of 0.07 g/cc and a v i s c o s i t y  about 1/70 t h a t  of 

water 

Liquid hydrogen i s  co lo r l e s s  and odorless .  

I n  t h e  diatomic hydrogen molecule t h e  two nuclear  sp ins  may be 

or ien ted  i n  t h e  same d i r ec t ion  or i n  opposite d i r ec t ions ,  giving r i s e  

t o  two molecular modifications designated as orthohydrogen and para- 

hydrogen respec t ive ly .  The equilibrium ortho-para ecmpositfoz Ls 

temperature depecdent. Hydrogen gas a t  room temperature has an 

equilibrium composition of 75$ orthohydrogen and 25% parahydrogen 

(commonly c a l l e d  normal hydrogen), while a t  20.4'K, t h e  equilibrium 

composition i s  0.21% orthohydrogen and 99.97% parahydrogen (cornmanly 

c a l l e d  equilibrium hydrogen). 

a t u r e  i s  cooled and condensed, t h e  conversion t o  equilibrium ortho-para 

composition w i l l  proceed slowly unless  catalyzed.  I n  t h e  presec t  work, 

t h e  composition of t h e  hydrogen i n  t h e  vapor- l iquid mixture was es-  

If normal hydrogen gas a t  yoom temper- 

1 
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s e n t i a l l y  t h a t  of normal hydrogen (see Chapter I V ,  Sec t ion  B-2). 

Only helium l i q u e f i e s  a t  a lower temperature than  hydrogen; a t  

atmospheric pressure it l i q u e f i e s  a t  4.2"K. It has a c r i t i c a l  temper- 

a t u r e  of 5.2"K; the re fo re  i n  t h e  range of l i q u i d  hydrogen temperatures 

pure helium cannot e x i s t  i n  t h e  l i q u i d  s t a t e .  

On t h e  high temperature s i d e  t h e  substances with normal b o i l i n g  

temperatures nearest  t h a t  of hydrogen (excluding t h e  i so topes  of hydro- 

gen) a r e  neon (27.4"K) and n i t rogen  (77.3"K). 

With t h e  rapid growth of cryogenic technology in recent pars l iqu id  

hydrogen has assumed an increas ingly  important r o l e  as a commercial 

chemical. The development of l i q u i d  hydrogen fue led  rocke ts  i n  t h e  

aerospace industry has c rea ted  a demand f o r  l i q u i d  hydrogen on a ton-  

nage b a s i s  i n  cont ras t  t o  t h e  l i t e r  q u a n t i t i e s  produced f o r  labora tory  

use only a few years  ago. 

The p r a c t i c a l  problems assoc ia ted  with t h e  use of l i q u i d  hydrogen 

as a rocket  f u e l  are enormous. Its low b o i l i n g  temperature and r e l a -  

t i v e l y  small  heat of vapor iza t ion  r equ i r e  t h e  use of highly e f f i c i e n t  

i n su la t ion  i n  s torage  and t r a n s f e r  f a c i l i t i e s ,  and i t s  wide explosive 

l i m i t s  i n  a i r  (4 t o  74% by volume) and low i g n i t i o n  energy c r e a t e  a 

s i g n i f i c a n t  explosion hazard wherever it i s  used. However, because 

of i t s  low molecular weight, hydrogen i s  t h e o r e t i c a l l y  capable of de- 

veloping a higher s p e c i f i c  impulse than  any o the r  chemical f u e l ,  and 

the  p o t e n t i a l  ga in  i n  weight reduct ion  and rocket  performance over con- 

vent iona l  fue l s  has been considered s u f f i c i e n t  t o  j u s t i f y  i t s  use.  

I 
I 
I 
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For many years  l i q u i d  hydrogen has been used i n  l o w  temperature 

research.  Among i t s  more important research app l i ca t ions  i s  t h e  hy- 

drogen bubble chamber used by phys ic i s t s  t o  s tudy t h e  i n t e r a c t i o n  of 

high energy p a r t i c l e s  with hydrogen nuc le i .  

I n  t h e  t r a n s f e r  of l i q u i d  hydrogen it i s  o f t en  necessary t o  pres-  

s u r i z e  t h e  hydrogen r e se rvo i r  with helium gas t o  e f f e c t  a r ap id  t r ans -  

f e r  and t o  prevent f l a sh ing  i f  mechanical pumps a r e  used. 

cases  it i s  des i r ab le  t o  know the  maximum exten t  t o  which helium may 

d isso lve  i n  t h e  l i q u i d  phase. I n  many app l i ca t ions  t h e  presence of 

helium i n  t h e  l i q u i d  i s  undesirable-such as i n  i t s  use as a rocket 

fuel-however i f  it i s  found t o  be so luble  t o  a s i g n i f i c a n t  ex ten t  it 

may be poss ib le  t o  use a hydrogen-helium mixture i n  a bubble chamber 

t o  s tudy t h e  i n t e r a c t i o n  of high-energy p a r t i c l e s  with helidm nucle i .  

Beyond t h e  p r a c t i c a l  uses of t h e  r e s u l t s  of a study of t h i s  sys-  

tem, it i r  i n t e r e s t i n g  i c  i t s e l f  simply because i t s  vapar- l iquid mix- 

ture e x i s t s  a t  a lower temperature than t h a t  of any other  binary sys- 

3 tem (with t h e  exception of mixtures of t h e  two isotopes of heliiim Ze- 

and He ). 

In  such 

4 

The present  inves t iga t ion  was undertaken t o  determine t h e  equi- 

l ibrium l i q u i d  and vapor phase compositions i n  t h e  hydrogen-helium 

system i n  t h e  temperature range l5.0-33.O"K and pressures  from hy- 

drogen sa tu ra t ion  pressure up t o  500 ps i a .  

covers almost t h e  e n t i r e  range over which pure hydrogen normally 

e x i s t s  i n  t h e  l i q u i d  s t a t e .  

This  temperature span 
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B. FREVIOUS WORK 

Data on low temperature vapor- l iquid equi l ibr ium i n  b inary  and 

multi-component systems i s  abundant i n  t h e  l i t e r a t u r e .  A considerable  

amount of work on such systems was done p r i o r  t o  1950. I n  1927 Dodge 

and Dunbar' made a thorough s tudy of t h e  system nitrogen-oxygen. 

l a rge  amount of work was done by t h e  Russians Fastovski  and Gonik- 

berg--' ' 3j6-9 and t h e i r  a s soc ia t e s  i n  t h e  l a t e  t h i r t i e s  and e a r l y  f o r -  

t i e s  on such systems as hydrogen-methane, argon-nitrogen, ni t rogen-  

methane, helium-methane, helium-nitrogen, and hydrogen-nitrogen, Other 

important work was done by Ruhemann 

A 

'0'13 and by Verschoyle. 1 4 , U  

With t h e  rapid growth of cryogenics i n  t h e  las t  10 or 15 years ,  

a l a rge  number of papers have been published dea l ing  with low temper- 

a t u r e  phase e q u i l i b r i a .  

t inued,  and i n  t h e  United S t a t e s  work i n  t h i s  a r ea  has been influenced 

considerably by Katz17'21958 of The Universi ty  of Michigan, s eve ra l  

of whose former s tudents  a r e  now prominent researchers  i n  t h i s  f i e l d .  

Other important cont r ibu t ions  i n  t h i s  country have been made by 

Bloomer 22-24930 and h i s  a s soc ia t e s  a t  t h e  I n s t i t u t e  of Gas Technology 

In  Russia t h e  work of F a s t ~ v s k i ~ ' ~  has con- 

i n  Chicago, and by Brandt, Stroud, Dalton, DeVaney, e t  a l . ,  25-29 a t  -- 

t h e  U. S. Bureau of Mines Helium Research Center i n  Amarillo, Texas. 

Severa l  useful  surveys and b ib l iographies  of low temperature 

vapor - l i q u i d  eqEilibrium da ta  have Seen published. 

marized t h e  low temperature phase equi l ibr ium da ta  taken up t o  1945 

and discussed the  r e l a t i v e  meri ts  of +,ne experimental  equipmeat used 

Ruhenmann'' sua- 

I 
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by d i f f e r e n t  inves t iga tors .  

and provides an exce l len t  general  in t roduct ion  t o  t h e  experimental 

techniques of low temperature vapor-liquid equilibrium work. 

and Parent3' made a survey of t he  l i t e r a t u r e  on experimental methods 

for low temperature vapor-liquid equilibrium measurements which i n -  

Ruhemann's work i s  q u i t e  comprehensive 

Bloomer 

cludes many references t o  systems s tudied  up t o  1950. Hala, e t  a l . ,  47 -- 
published a l i s t  of references covering a l l  systems f o r  which vapor- 

l i q u i d  equilibrium da ta  had been published i n  t h e  l i t e r a t u r e  up t o  

February 1957 inc lus ive .  In  1960 t h e  U. S. Nat ional  Bureau of Stand- 

a r d ~ ~ '  published a bibliography of approximately 700 references on 

t h e  physical  e q u i l i b r i a  and r e l a t ed  p rope r t i e s  of some cryogenic sys-  

tems. Included i n  t h i s  compilation are re ferences  t o  papers dea l ing  

wi th  b inary  and multi-component mixtures containing these  substances:  

hydrogen, helium, nitrogen, carbon dioxide, carbon morLoxide, methane, 

ethane, ar,d propaze, While the document does not coritain any ex- 

planatory information, it does include a convenient summary, i n  t a b l e  

form, of t h e  references dealing with each component. 

No attempt w i l l  be made here t o  summarize t h e  work which has been 

done i n  low temperature vapor- l iquid equilibrium. The exce l len t  sur -  

veys described above may be consulted f o r  f u r t h e r  information. 

Up t o  t h e  present  time only two repor t s  have been published con- 

t a i n i n g  experimental vapor-liquid equilibrium da ta  a t  l i q u i d  hydrogen 

temperatures; both dea l  with the  system hydrogen-helium and cover a 

l imi ted  range of temperatures and pressures .  
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The f irst  of these  i s  a Ph.D. t h e s i s  done by S. R .  Smith32 a t  

Ohio S t a t e  University i n  1952. Smith repor ted  experimental  values  

of vapor and l iqu id  phase compositions a t  t h r e e  temperature 17.40, 

20.39, and 21.800~~ and a t  pressures  up t o  850 p s i a .  

apparatus and procedures used by Smith and t h e  r e s u l t s  of h i s  work 

a r e  discussed elsewhere i n  t h i s  paper. 

The experimental  

More r ecen t ly  Roel l ig  and Giese 33,34 repor ted  nine i s o l a t e d  pres -  

sure-temperature po in t s  i n  t h e  hydrogen-helium system covering a temp- 

e r a t u r e  range of 16.3-26.8'~ and pressures  up t o  12.7 atmospheres. 

Comparison of t h e  data from these  two sources  i s  d i f f i c u l t  due 

t o  t h e  small number of po in t s  repor ted  by Roe l l ig  and Giese; however 

a cursory comparison seems t o  ind ica t e  poor agreement, e s p e c i a l l y  i n  

t h e  l i q u i d  phase compositions where t h e  repor ted  helium concentra- 

t i o n s  d i f f e r  by as much a s  a f a c t o r  of t e n .  

Roel l ig  and Giese d id  not measure temperatures d i r e c t l y ,  bu t  e s -  

t imated them by f ind ing  the  p a r t i a l  p ressure  of hydrogen i n  t h e  vapor 

phase (from the mass spectrometer a n a l y s i s  of t h e  vapor samples), and 

then t ak ing  the  temperature from a vapor pressure  curve for pure hy- 

drogen, a f t e r  f i r s t  ca l cu la t ing  t h e  depression of t h e  vapor pressure  

due t o  helium i n  t h e  l i qu id ,  using Raou l t ' s  l a w .  The assumption of 

i d e a l  behavior i n  t h e  l i q u i d  so lu t ion  and i n  t h e  vapor phase hard ly  

seems j u s t i f i e d ;  moreover t h e  temperature a r r i v e d  a t  i n  t h i s  manner 

i s  dependent upon the  helium content of t h e  l i qu id ,  which i s  perhaps 

t h e  l e a s t  r e l i a b l e  po r t ion  of t h e  experimental  data.  Eckert and 

I 
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P r a ~ s n i t z ~ ~  c r i t i c i z e d  t h e  temperature ca l cu la t ions  of Roel l ig  and 

Giese and concluded t h a t  even a t  the r e l a t i v e l y  low pressures  involved, 

t he  temperatures reported were i n  e r r o r  by as much as 2 .7"K.  

I n  addi t ion  t o  t h e  two repor t s  of experimental work on hydrogen- 

helium vapor- l iquid equilibrium, two add i t iona l  r e p o r t s  36, 37 have been 

published which d e a l  s p e c i f i c a l l y  w i t h  t h i s  system, although they  con- 

t a i n  no o r i g i n a l  experimental data. The f i rs t  of these  is  a b i b l i o -  

graphy of references on hydrogen and helium and the i r  mixtures w i t h  

o ther  substances. The second i s  a t h e o r e t i c a l  development of a thermo- 

dynamic consistency t e s t  applied t o  the data of Smith, and is d i s -  

cussed elsewhere i n  t h i s  work. 



11. RENIEN OF EXPERIMENTAL METHODS 

A .  GENERAL 

For a two component system with eo -ex i s t ing  l i q u i d  and vapor phases 

t h e  phase r u l e  gives  

TJ = C + 2 - P  = 2 + 2 - 2  = 2 8  

A t  f i xed  pressure and temperature t h e  system i s  inva r i an t ,  and it i s  

completely determined i f  t h e  compositions of t h e  two phases are known. 

A discussion of some commonly used methods of experimental study 

44 of vapor-liquid e q u i l i b r i a  has been presented by Sage and Reamer; 

however it does not include a considerat ion of t h e  problems of work a t  

low temperatures. 

discussion of experimental methods used i n  vapor- l iquid equilibrium 

s t u d i e s ;  however it gives  l i t t l e  a t t e n t i o n  t o  t h e  problems of Fiork a t  

low temperatures. 

The book by Hala, -- e t  a1.,47 includes an extensive 

The surveys of Ruhemann'' and of Bloomer and Parent3' have been 

mentioned above. 

The determinations t o  be made i n  phase e q u i l i b r i a  s t u d i e s  are those 

of pressure,  temperature, and composition. Methods of measuring pres-  

sure  have been we l l  e s t ab l i shed  and can gene ra l ly  be appl ied t o  cryo- 

genic systems without d i f f i c u l t y .  The p r a c t i c a l  problems a s soc ia t ed  

with accu ra t e  temperature and composition determinations may be sum- 

marized as follows: 

8 
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1. A means of maintaining a low temperature within narrow l i m i t s  

and of accurately measuring t h e  temperature. 

A method of achieving equilibrium between the  l i qu id  and vapor. 

A means of withdrawing samples 6f t h e  l i q u i d  and vapor phases 

without a l t e r i n g  t h e  equilibrium compositions. 

A means of analyzing the samples for composition. 

2. 

3 .  

4. 

Each of these  problems is discussed separa te ly  below. 

B. TESIPERATURE MEASUREMENT AND CONTROL 

For measuring temperatures i n  cryogenic systems t h e  methods of gas 

thermometers, vapor pressure thermometers, thermocouples, and r e s i s t a n c e  

thermometers have been successful ly  used. Detai led discussions of t h e  

techniques of low temperature thermometry have been given by Scot t ,  45 

White,38 and Hudson,46 and w i l l  not be repeated here .  

In  t h e  present work t h e  primary temperature measuring element is  

a platinum r e s i s t a n c e  thermometer. Secondary temperatures a r e  meas- 

ured by d i f f e r e n t i a l  thermocouples referenced t o  the  r e s i s t a n c e  t h e r -  

mometer. A complete descr ipt ion of t h i s  system w i l l  be found i n  a later 

sec t ion .  

The means ava i lab le  t o  achieve and maintain steady low temper- 

a tu re s  over a given range depend on t h e  c h a r a c t e r i s t i c s  of t h e  substances 

which e x i s t  as a l i qu id  a t  those temperatures and below. Some of t h e  

more commonly used cryogenic f l u i d s  are methane, argon, oxygen, n i t r o -  

gen, hydrogen, and helium. 
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I n  low temperature vapor- l iqu id  equi l ibr ium s t u d i e s  t h e  most com- 

monly used method of temperature con t ro l  30,48-50 i s  one i n  which l iquid 

n i t rogen  is  used i n  a "cold f inge r "  t o  cool  a ba th  of f r eon  or  some 

o ther  low-boiling l i q u i d .  Such systems usua l ly  include an e l e c t r i c a l  

hea t ing  system and an automatic temperature c o n t r o l l e r  which senses  any 

temperature change and provides t h e  necessary hea t ing  or cool ing t o  

r e s t o r e  t h e  temperature t o  i t s  p rese t  value.  

A cryogenic l i q u i d  a t  atmospheric pressure  may be used 25933 as a 

primary ba th  f l u i d  t o  obta in  temperatures above i t s  normal b o i l i n g  

temperature by p a r t i a l l y  in su la t ing  t h e  equi l ibr ium v e s s e l  from t h e  

l i q u i d  and supplying s u f f i c i e n t  hea t  t o  maintain it a t  a temperature 

above t h a t  of the ba th .  S t i l l  o ther  methods employ a loop of c i r c u -  

l a t i n g  gas which flows through t h e  cryogenic l i q u i d  and then i n t o  a 

secondary l i qu id  bath o r  through a c o i l  around t h e  equi l ibr ium vesse l .  

When t h e  temperature range of i n t e r e s t  f a l l s  wi th in  t h e  normal 

range of l i qu id  temperatures of a cryogenic f l u i d ,  t h e  method of vapor 

pressure  cont ro l  may be used t o  maintain s teady temperatures.  I n  1,32 

t h i s  case t h e  equilibrium v e s s e l  i s  immersed i n  t h e  b o i l i n g  l i q u i d  

whose temperature remains s teady a s  long a s  t h e  vapor pressure i s  held 

constant .  Such a system may requ i r e  a c ryos t a t  capable of withstand-  

ing  considerable i n t e r n a l  pressure;  t h i s  r u l e s  out t h e  use of conven- 

t i o n a l  g l a s s  dewars. 

I n  t h e  present work t h e  temperature range of i n t e r e s t  i s  p rec i se ly  

t h a t  over which hydrogen normally e x i s t s  as a l i q u i d  (15 8-32 9 O K ) .  
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This  l i m i t s  t h e  choice of r e f r i g e r a t i n g  f l u i d s  t o  helium, hydrogen (and 

i ts  i so topes) ,  and neon. 

most p r a c t i c a l .  

and a r e l a t i v e l y  l a rge  heat of vaporization, it is  not r e a d i l y  ava i lab le  

i n  t h e  l i q u i d  s t a t e  and could not provide cool ing over t h e  e n t i r e  range 

of i n t e r e s t .  The isotopes of hydrogen (deuterium, hydrogen der te r ide ,  

and t r i t i u m )  of fer  no advantage over normal hydrogen and would be pro- 

h i b i t i v e l y  expensive. 

Since helium has a c r i t i c a l  temperature of 5.2'K it could only be 

used with some method of back-heating or with a secondary loop of c i r -  

cu l a t ing  helium gas.  

i n  t h e i r  s tud ie s  of t h e  hydrogen-helium system is  cooled by a s e r i e s  

of f i n s  a t tached t o  t h e  rod a t  t h e  base of t h e  c e l l  and immersed i n  a 

ba th  of l i q u i d  helium. 

Of these,  normal hydrogen and helium a re  t h e  

Although neon has a normal b o i l i n g  temperature of 27.O"K 

The equilibrium c e l l  used by Roel l ig  and Giese33934 

Helium o f f e r s  t h e  convenience of being non-explosive; however i t s  

high cos t  and low heat  of vaporizat ion made i t s  use i n  t h e  present  work 

impract ical .  

For temperatures above 20.4OK l i q u i d  hydrogen a t  atmospheric pres -  

sure may be used with some method of back-heating o r  with a secondary 

loop of c i r c u l a t i n g  helium gas. 

ing temperature l i q u i d  hydrogen can only be used by pumping a vacuum 

over t h e  bath.  

For temperatures below t h e  normal b o i l -  

By maintaining steady pressures over a ba th  of pure bo i l ing  l i q u i d  

hydrogen, from t h e  t r i p l e  point pressure (0.07 atmaspheres) t o  t*he 
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c r i t i c a l  pressure (12.7 atmospheres), very c lose  temperature c o n t r o l  can 

be maintained over t h e  e n t i r e  range of i n t e r e s t .  

A vapor pressure con t ro l l ed  l i q u i d  hydrogen ba th  was se l ec t ed  f o r  

use i n  t h e  present work a f t e r  consider ing numerous o ther  p o s s i b i l i t i e s .  

Several  methods of vapor pressure  c o n t r o l  have been descr ibed by 

White3 8 and have been used with l i q u i d  hydrogen t o  c o n t r o l  temperatures 

t o  wi th in  0 . 0 l 0 K ,  The method used i n  t h e  present  work i s  a modifica- 

t i o n  of t h a t  used by Dodge and Dunbar' i n  t h e i r  s tudy of t h e  oxygen- 

n i t rogen  system. 

t h e  hydrogen-helium system. 

0.01"K. 

This method was a l s o  used by Smith32 i n  h i s  s tudy of 

He reported temperature c o n t r o l  t o  wi th in  

C .  METHODS OF ACHIEVING EQUILIBRIUM BETWEEN LIQUID AND VAPOR 

1. Clas s i f i ca t ion  of Methods 

Experimental methods f o r  obtaining an equi l ibr ium mixture of l i q u i d  

and vapor a t  low t empera tu re  have been c l a s s i f i e d  by Ruhemann,l6 Bloomer 

and Parent,30 and Hala, -- e t  a ~ . ~ 7  Their  c l a s s i f i c a t i o n s  a r e  s imi l a r  and 

a r e  as fol lows:  

( a )  S t a t i c  Method 

( b )  Flow Method 

( c )  Vapor Reci rcu la t ing  Method; and 

( d )  Dew and Bubble Point  Method 



( a )  S t a t i c  Method 

I n  t h e  s t a t i c  method a vapor-liquid mixture i s  confined i n  a closed 

equilibrium c e l l  and maintained a t  constant  temperature. The mixture i s  

ag i t a t ed  u n t i l  equilibrium i s  achieved, a f t e r  which samples of t h e  equi- 

l ibr ium phases are withdrawn and analyzed f o r  composition. The s t a t i c  

method i s  simple and s t ra ightforward.  It has been used successfu l ly  i n  

t h e  e a r l y  work of V e r s c h ~ y l e l ~ , ~ ~  and Fedoritenko and Ruhemann,” and 

i s  commonly used f o r  s tud ies  a t  h igher  temperatures,  

This method w a s  used by Roel l ig  and G i e ~ e ~ ~ , ~ ‘  i n  t h e i r  recent  

study of t h e  hydrogen-helium system. Their  apparatus consis ted of a 

glass-walled equilibrium vessel  which permitted v i s u a l  observation of 

t h e  equilibrium mixture at a l l  t imes.  Agi ta t ion  was provided by a ver-  

t i c a l - a c t i o n  s t i r r i n g  mechanism cons is t ing  of s eve ra l  d i s c s  a t tached t o  

a long sha f t  and operated manually from a poin t  above t h e  c ryos t a t .  

16 Rulhemann s t a t e s  t h a t  the ch ief  disadvantage of t h e  s t a t i c  aysr,ern 

i s  t h a t  equilibrium i s  apt t o  be destroyed when t h e  samples a r e  with- 

drawn, so  t h a t  t h e  r e s u l t i n g  compositioas a r e  not those of a t r u e  

equilibrium mixture. 

( b )  Flow Method 

I n  t h e  flow method a mixture of gases of f ixed  composition i s  

cooled as it flows through a s e r i e s  of c o i l s  and i n t o  t h e  equilibrium 

c e l l ,  a l l  bf which a re  maintained a t  t h e  equi l ibr ium temperature,  

c o i l s  a r e  so arranged t h a t  a l l  condensate flows i n t o  t h e  equilibrium 

The 
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c e l l  where it accumulates and is  pe r iod ica l ly  sampled. The vapor flows 

out i n  a continuous stream. 

Sampling is convenient when using t h e  flow system, a s  t h e r e  i s  no 

upse t t i ng  of the  equilibrium pressure a s  t h e  samples a r e  withdrawn. If 

s u i t a b l e  ana lys i s  equipment i s  ava i lab le ,  e i t h e r  t h e  vapor o r  t h e  l i qu id ,  

o r  both, may be continuously analyzed. 

The disadvantages of t h i s  system a r e  t h a t  one i s  never sure  whether 

equi l ibr ium i s  achieved, and unless  a windowed c e l l  i s  used it i s  d i f -  

f i c u l t  t o  determine t h e  quant i ty  of l i q u i d  present  and t o  prevent swamp- 

ing  of t he  c e l l .  

This  method was used i n  some e a r l y  work by Ruhemann 10-12,51 and 

o thers ,  and more r ecen t ly  by Brandt, -- e t  a l .  39,23 

quent ly  i n  solid-vapor equi l ibr ium s tud ie s .  

It i s  a l s o  used f r e -  

( e )  Vapor Reci rcu la t ing  Method 

I n  t h e  vapor r e c i r c u l a t i n g  method t h e  equi l ibr ium v e s s e l  i s  con- 

nected t o  a closed loop of tubing, some of which may be a t  room temper- 

a tu re ,  through which t h e  vapor i s  continuously withdrawn from t h e  t o p  

of t h e  equilibrium v e s s e l  and bubbled through t h e  l i q u i d  a t  t h e  bottom. 

The continuous flow of small  bubbles through t h e  l i q u i d  serves  t o  b r ing  

t h e  two phases i n t o  in t imate  contact  and t o  a g i t a t e  t h e  l i q u i d .  

This  method was prefec ted  by Dodge and Dunbar' and has been f r e -  

Ruhemann'' descr ibes  it as  t h e  quent ly  used 43,48,50 i n  recent  years .  

most accura te  and r e l i a b l e  of a l l  e x i s t i n g  methods, but  po in ts  out t h a t  
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it requi res  r a t h e r  e labora te  equipment. 

I ts  chief  advantages a r e  t h a t  equilibrium i s  c e r t a i n  t o  be achieved 

through continuous r ec i r cu la t ion ,  and, i f  properly designed, it brings 

t h e  mixture t o  equilibrium rapidly.  

A por t ion  of t h e  equilibrium vapor may be i s o l a t e d  i n  t h e  ex te rna l  

po r t ion  of t h e  loop and sampled a t  room temperature, without lowering 

t h e  pressure over t h e  l i q u i d  i n  the  equi l ibr ium c e l l .  

must be withdrawn from the  equilibrium c e l l .  

The l i q u i d  sample 

This method w a s  used by Smithg2 i n  h i s  s tudy of t h e  hydrogen-helium 

system. 

reach equilibrium under f ixed  conditions;  however he d id  not i nd ica t e  

t h e  volume of t h e  ex te rna l  c i r c u l a t i n g  loop or  t h e  flow r a t e  of t h e  

vapor. 

He reported t h a t  approximately 1-1/2 t o  2 h r  were required t o  

A vapor r e c i r c u l a t i n g  system similar t o  t h a t  used by Smith, but 

wi th  seve ra l  modifications,  was se lec ted  f o r  use i n  t h e  present  work. 

( d )  

I n  t h e  dew and bubble point method a gas of accura te ly  known com- 

Dew and Bubble Point  Method 

pos i t i on  is  charged slowly i n t o  an equi l ibr ium vesse l  maintained a t  con- 

s t a n t  temperature.  The pressure a t  which t h i s  mixture f i r s t  begins t o  

condense i s  observed and provides a point on t h e  dew point  curve f o r  

mixtures of t h a t  composition. I n  p r a c t i c e  t h e  dew point  pressure is  

obtained by v i s u a l  observation of t h e  f i rs t  formation of l i q u i d  drople t s ,  

o r  by charging i n  metered increments of gas and p l o t t i n g  a graph of 

t o t a l  amount of gas vs .  t o t a l  pressure.  A sharp break i n  t h e  curve w i l l  
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occur a t  t h e  dew point .  I f  add i t iona l  gas i s  added, t h e  equi l ibr ium 

c e l l  w i l l  eventual ly  become f i l l e d  with l i q u i d  and upon f u r t h e r  addi-  

t i o n  the  pressure w i l l  r i s e  sharply,  causing a second break t o  appear 

i n  t h e  graph described above. The pressure  i n  t h e  system as  t h e  last  

bubble of vapor disappears def ines  a po in t  on t h e  bubble point  curve 

( sa tu ra t ed  l i qu id  curve)  f o r  mixtures of t h a t  composition. 

has been used by Bloomer and Parent3' and by Gore, -- e t  a l .  

This method 

49 

The chief advantage of t h i s  method i s  t h a t  it e l imina tes  t h e  need 

. f o r  t he  withdrawal and ana lys i s  of samples of t h e  equi l ibr ium phases, 

s ince  a l l  necessary da ta  can be obtained from c ross -p lo t s  of t h e  dew 

and bubble point da ta  f o r  mixtures of known composition. 

very s i g n i f i c a n t  advantage s ince  it i s  o f t e n  d i f f i c u l t  t o  ob ta in  rep-  

r e sen ta t ive  samples of two eo-exis t ing  phases without upse t t i ng  the  

equi l ibr ium. 

This i s  a 

I n  order t o  obtain accura te  r e s u l t s  i t  i s  necessary t o  observe t h e  

conten ts  of the  equilibrium v e s s e l  s o  t h a t  t h e  dew and bubble poin ts  

may be exact ly  determined. Even then it must be done with g r e a t  care .  

For work a t  low temperatures and high pressures  t h e  use of g l a s s  

i n  t h e  system presents  some d i f f i c u l t  p r a c t i c a l  problems, e spec ia l ly  

where t h e  substances used a r e  highly flammable. 

D. SAMPLING 

1. General 

Unless the dew and bubble point  method i s  used, samples of t h e  two 
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co-exis t ing phases must be withdrawn and analyzed f o r  composition. 

sampling of t h e  vapor phase presents no p a r t i c u l a r  problems s ince  t h e  

composition of t h e  gas is not  l i k e l y  t o  change as t h e  sample i s  with-  

drawn. 

The 

The l i q u i d  phase w i l l  general ly  cons i s t  of two or  more components 

of d i f f e r i n g  v o l a t i l i t i e s ,  a l l  of which e x i s t  a s  gases a t  room temper- 

a tu re .  The problem i s  one of insuring t h a t  t h e  composition is  not 

a l t e r e d  as  t h e  sample i s  withdrawn and vaporized t o  a gas a t  room tem- 

pera ture .  

2. Batch Method 

Two d i f f e r e n t  methods of l i q u i d  sampling have been used success- 

f u l l y  i n  low temperature vapor-liquid equi l ibr ium s tud ie s .  

method a small  c losed volume, with a valve a t  each end, i s  at tached t o  

t h e  equilibrium c e l l  i n  t h e  cold por t ion  of t h e  equipment ( see  Fig.  1). 

Valve A i s  f i rs t  opened, t h e  volume i s  evacuated, and valve A i s  closed; 

valve B is  then opened and t h e  small  volume f i l l s  with l i q u i d  from t h e  

equilibrium c e l l .  Valve B i s  then closed and valve A opened, allowing 

t h e  trapped l i q u i d  sample t o  vaporize i n t o  a l a rge  expansion volume, 

from which samples a r e  l a t e r  withdrawn. Since t h e  small  volume i s  a t  

t h e  equilibrium temperature, it may be necessary t o  warm it s l i g h t l y  

t o  insure t h a t  a l l  of t h e  l iqu id  evaporates.  

I n  t h e  f r is t  

This method of sampling was used i n  both of t h e  previous inves t iga-  

t i o n s  of t h e  hydrogen-helium system. Both Smith,3P and Roel l ig  and 
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Fig. 1. Batch sampling equipment. 
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G i e ~ e ~ ~  reported some d i f f i c u l t i e s  with t h e i r  sampling apparatus.  Smith 

eventua l ly  obtained s a t i s f a c t o r y  r e s u l t s ,  while t h e  apparent d i screp-  

anc ies  i n  t h e  da ta  of Roel l ig  and Giese are due, i n  pa r t ,  t o  t h e i r  prob- 

lems with l i q u i d  sampling. 

The batch method r equ i r e s  a r a t h e r  e l abora t e  s e t  of valves  which 

must operate  s a t i s f a c t o r i l y  a t  very low temperatures and provide a t i g h t  

s e a l  under both vacuum and pressure;  a l s o  t h e  long cont ra1  rods extend- 

ing  i n t o  t h e  l i q u i d  bath may introduce a s i g n i f i c a n t  heat  leak.  

procedure i s  cumbersome and time-consuming, and g rea t  care  must be taken 

i f  accurate  r e s u l t s  are t o  be obtained. 

The 

3. Continuous Flow Method 

The second type of l i qu id  sampling device c o n s i s t s  of a c a p i l l a r y  

tube,  through which t h e  l i qu id  i s  withdrawn a t  a very low r a t e  of flow. 

A s  t h e  l i q u i d  flows i n t o  t h e  warm por t ion  of t h e  c a p i l l a r y ,  it vaporizes  

and flows d i r e c t l y  i n t o  a previously evacuated sample conta iner .  If 

t h e  c a p i l l a r y  i s  properly s ized a s  t o  in s ide  diameter and length,  it i s  

poss ib le  t o  obta in  a very steady, low volume r a t e  of flow, although t h e  

v e l o c i t y  of flow ins ide  t h e  c a p i l l a r y  may be q u i t e  high. Under these  

condi t ions an equilibrium i s  quickly e s t ab l i shed  and t h e  high v e l o c i t y  

of flow precludes any accumulation of one component a s  a r e s u l t  of 

f r a c t i o n a t i o n ,  

This method was se l ec t ed  f o r  use i n  t h e  present  work, A complete 

desc r ip t ion  of t h e  equipment used w i l l  be found i n  a la ter  sec t ion .  
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E. GAS ANALYSIS 

Once representat ive samples of t he  equilibrium l i q u i d  and vapor 

have been obtained they may be analyzed by any s u i t a b l e  means, depend- 

ing on the  nature of the  component gases.  Gas chromatography and mass 

spectrometry are  among the  methods more commonly used. 

Samples taken i n  t h e  present work were analyzed by means of a mass 

spectrometer. 
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111. EXPERIMENTAL EQUIPMENT 

A. GENERAL 

Because of t h e  d i f f i c u l t i e s  inherent  i n  car ry ing  out experimental 

s tud ie s  a t  l i q u i d  hydrogen temperatures, and because of t h e  problems en- 

countered by Smith,32 and by Roel l ig  and Giese33 i n  previous inves t iga-  

t i o n s  of t h e  hydrogen-helium system, a c a r e f u l  study w a s  made of exper- 

imental  methods and equipment t h a t  have been used successfu l ly  i n  t h e  

pas t  i n  low temperature vapor-liquid equilibrium work. Many d i f f e r e n t  

designs were considered, and t h e  one f i n a l l y  se l ec t ed  includes modifica- 

t i o n s  of equipment used successful ly  by other  i nves t iga to r s  as w e l l  as 

some new features which have not  been previously employed. 

A schematic diagram of the experimental equipment i s  shown i n  Fig.  

2; a photograph of t h e  cont ro l  panel appears i n  Fig.  3* The bas ic  de- 

s ign  was taken from Dodge and Dunbar,l and cons i s t s  of a vapor-recirc-  

u l a t i n g  equilibrium system w i t h  a vapor pressure cont ro l led  l i q u i d  

hydrogen bath.  The equipment as shown i n  tne diagram of Fig. 2 f a l l s  

i n t o  four  main sec t ions :  (1) t h e  c ryos t a t ,  ( 2 )  t h e  vapor- rec i rcu la t ing  

system, (3)  t h e  sampling system, and (4 )  t h e  vapor pressure con t ro l  sys- 

tem. Each of these  sec t ions  w i l l  be discussed sepa ra t e ly  below. 

Auxil lary sec t ions  of t he  equipment include t h e  charging system 

f o r  t h e  c i r c u l a t i o n  loop, l i qu id  ni t rogen supply system, vacuum sys-  

tem, and vent system. 

The experimental apparatus was assembled or, a framework of Uni- 

21 
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Fig. 3. Vie.* of c o n t r o l  panel. 
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s t r u t  s t e e l  channels, using a sheet  of quar te r  inch Masonite panel ing 

f o r  mounting the valves,  gages, and o ther  con t ro l s .  The s ides  and back 

of t he  framework a re  p a r t i a l l y  covered and t h e  t o p  i s  f i t t e d  with an 

exhaust hood. 

B. CRYOSTAT 

Because of i t s  low temperature and r e l a t i v e l y  small  heat  of vapor- 

i z a t  ion  (7500 c a l / l  a t  20 s 4" K), l i q u i d  hydrogen cannot be e f f i c i e n t l y  

s tored  i n  conventional vacuum insu la t ed  double-walled dewards of t h e  

type used f o r  l i q u i d  n i t rogen  and o ther  higher  b o i l i n g  cryogenic l i q -  

u ids .  I n  t h e  past  t h e  conventional l i q u i d  hydrogen s torage  v e s s e l  has 

employed an outer jacket  of l i q u i d  ni t rogen i n  a separa te  vacuum insu-  

l a t e d  container .  More r ecen t ly  t h e  development of mul t ip le - layer  insu-  

l a t  ion, "-'' of ten  c a l l e d  "super- insulat ion,  " has made poss ib le  t h e  con- 

s t r u c t i o n  of e f f i c i e n t  s torage  vesse l s  f o r  l i q u i d  hydrogen without t h e  

use of ni t rogen sh ie ld ing .  This  type of i n s u l a t i o n  was chosen f o r  t h e  

c ryos t a t  used i n  the  present  work because of t h e  s impl i f i ca t ion  it 

permitted i n  design and cons t ruc t ion .  

A cutaway drawing of t h e  c ryos t a t  with t h e  equi l ibr ium c e l l  i n  

p lace  i s  shown i n  Fig.  4.  

removed is  shown i n  Fig.  5 ,  and t h e  completed u n i t  i s  shown i n  Fig.  6, 

with t h e  vacuum insu la t ed  t r a n s f e r  l i n e  and l i q u i d  hydrogen dewar i n  

pos i t i on  f o r  f i l l i n g .  

Since vapor pressure c o n t r o l  i s  used t o  maintain s teady tempera- 

A view with t h e  ou te r  i n su la t ion  p a r t i a l l y  
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Fig. 4. Sect ion  through c ryos t a t  shmlng equi l ibr ium c e l l .  
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Fig.  5 .  V i e w  of c r y o s t a t  wi th  ou te r  insulation partially removed. 
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Fig. < .  View of cryostat and liqxid hydrogen deward during filling. 
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t u r e s ,  t h e  cryostat  i s  designed f o r  i n t e r n a l  working pressures  up t o  

200 p s i .  

The inner  and outer  ves se l s  of t h e  c ryos t a t  a r e  made of s tandard 

schedule f i v e  s t a i n l e s s  s t e e l  pipe (wal l  th ickness  0.108 i n . )  with s tand-  

a rd  butt-weld pipe caps f o r  t he  end p ieces .  The inner  vesse l ,  constructed 

from 6 i n .  pipe, i s  suspended from t h e  lower f l ange  by a shor t  length of 

3 in .  pipe t o  reduce the  hea t  flow down t h e  neck. The lower end of t h i s  

3 i n .  neck i s  welded i n t o  a hole  cu t  i n t o  a 6 i n .  pipe cap which forms 

t h e  upper p a r t  of t he  inner ves se l .  

The lower and upper f langes  a r e  machined from 3/4 and 1/2 i n .  t h i c k  

s t a i n l e s s  s t e e l  p l a t e  respec t ive ly .  The outer  edge of t h e  lower f lange  

i s  machilied down t o  a 3/8 i n .  th ickness  t o  reduce t h e  heat  flow i n t o  

t h e  neck from the  outer  j acke t .  A United A i r c r a f t  Products t e f l o n -  

coated s t a i n l e s s  s t e e l  O-ring i s  used t o  s e a l  t h e  t o p  f lange .  

Type 304 s t a i n l e s s  s t e e l  i s  used throughout, includixg i n  t h e  0- 

r i n g  and f lange b o l t s ,  t o  e l imina te  problems of d i f f e r e n t i a l  contrac-  

t i o n  upon cooling. 

I n  t h e  assembly of t he  c ryos t a t  a l l  j o i n t s  a r e  h e l i a r c  welded, 

with t h e  exception of the  tubes which pass through t h e  t o p  f lange  and 

t h e  vacuum ou t l e t  on t h e  outer  jacke t  which a r e  s i l v e r  soldered.  

The inner v e s s e l  was constructed f i r s t  and welded t o  t h e  lower 

f lange .  

mult iple- layer  i n su la t ion ,  and welded i n t o  t h e  outer  jacke t  with t h e  

f i n a l  weld being made a t  t h e  outer  edge of t h e  lower f lange .  A shor t  

It was then  wrapped with approximately 0.8 i n .  of Linde SI-4 
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l ength  of 8 i n .  pipe was welded t o  t h e  t o p  of t h e  v e s s e l  t o  provide a 

r e se rvo i r  f o r  l i q u i d  ni t rogen which serves  t o  f u r t h e r  reduce t h e  hea t  

flow down t h e  neck and t o  precool t h e  c i r c u l a t i n g  vapor before  it re- 

e n t e r s  t h e  c r y o s t a t .  

The c ryos t a t  was fabr ica ted  t o  t h e  au tho r ' s  design a t  t h e  labora- 

t o r i e s  of t h e  Linde Co., Tonawanda, New York. The inner  ves se l  was pres -  

s u r e  t e s t e d  t o  500 l b  and both t h e  inner  v e s s e l  and t h e  in su la t ing  space 

were helium leak  t e s t e d .  

During t h e  i n s t a l l a t i o n  of t h e  c ryos t a t  t h e  upper ha l f  of t h e  outer  

v e s s e l  was wrapped with approximately 1 i n .  of f i b e r g l a s s  i n s u l a t i o n  

which was covered with aluminum f o i l  ( see  Fig.  5 )  and sea led  t o  t h e  ves- 

s e l  with p l a s t i c  t ape .  This  serves t o  prevent a i r  from flowing between 

t h e  i n s u l a t i o n  and t h e  cryostat ,  where t h e r e  would be a danger of oxygen 

condensing around t h e  l i q u i d  ni t rogen r e se rvo i r  a t  t h e  top .  Approxi- 

mately 6 i n ,  of Styrofoam insu la t ion  i n  t h e  form of 2 irlm t h i c k  shee ts  

was then placed around t h e  outs ide of t h e  v e s s e l  and pressed t i g h t l y  

around t h e  fo i l -covered  f ibe rg la s s ,  providing a s e a l  t o  keep out a i r .  

The Styrofoam was then covered with a t h i c k  shee t  of c l e a r  p l a s t i c  (see 

F ig .  6 ) .  

inches of f i b e r g l a s s  i m u l a t i o n  and covered wi th  1 i n .  t h i c k  shee t s  of 

Styrofoam. 

The lower ha l f  of the  c r y o s t a t  was wrapped with seve ra l  

For maximilm ef f ic iency  the  mul t ip le - layer  i n s u l a t i o n  space must be 

evacuated t o  a pressure  of 0.1 micron o r  l e s s .  I n  p r a c t i c e  it i s  not  

necessary t o  pump t h e  j acke t  down t o  t h i s  pressure,  s ince  a i r  remain- 
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ing  i n  t h e  in su la t ing  space w i l l  condense on t h e  ou t s ide  of t h e  inner  

v e s s e l  when it i s  f i l l e d  with l i q u i d  hydrogen, 

i n s u l a t i n g  space was evacuated and purged s e v e r a l  t imes with carbon 

dioxide,  and then pumped t o  a pressure  of a few microns wi th  a mechanical 

vacuum p’Jmp. This was done s o  t h a t  t h e  necessary low pressure  would be 

produced when l iqu id  n i t rogen  i s  t r a n s f e r r e d  i n t o  t h e  c r y o s t a t  t o  pre-  

cool  i t .  Sol id  carbon dioxide has a neg l ig ib ly  small vapor pressure  a t  

l i q u i d  ni t rogen temperature.  

I n  t h e  present  work t h e  

This method of condensing vacuum insu la -  

t i o n ,  using carbon dioxide,  has been s tudied  by Van Gundy, e t  a l . ,  57 
-- 

and found t o  be h ighly  e f f e c t i v e  with mul t ip le - layer  i n su la t ion .  

The completed v e s s e l  ( see  F ig .  6 )  i s  very compact and proved t o  be 

h ighly  e f f i c i e n t .  During operat ion it was found t h a t  l i q u i d  hydrogen 

was boi led  of f  a t  a r a t e  of about one l i t e r  i n  6 hr ,  which r ep resen t s  a 

t o t a l  heat  leak of approximately 1200 c a l / h r .  

heat  leak  t n a t  was ca l cu la t ed  when t h e  v e s s e l  was designed. 

This i s  very c l o s e  t o  t h e  

A schematic drawing of t h e  t o p  f l ange  assembly is  shown i n  Fig.  7, 

and a photograph i n  Fig., 8. 

i n t o  t h e  center  of t h e  f l ange  and serves  as t h e  o u t l e t  f o r  t h e  boi l -of f  

from t h e  hydrogen bath.  The l a rge  diameter tub ing  i s  used t o  allow 

s u f f i c i e n t  flow a r e a  f o r  vent ing t h e  hydrogen vapor from t h e  c ryos t a t  

i n  case of a rupture i n  t h e  outer  j acke t .  I n  t h i s  event a i r  would con- 

dense on t h e  outs ide of t h e  inner  vesse l ,  causing r ap id  vapor iza t ion  of 

t h e  conten ts  and leading t o  a dangerous pressure  increase  unless  a su f -  

f i c i e n t l y  large vent l i n e  i s  provided. 

A 314 i n .  O.D. copper tube  i s  s i l v e r  soldered 
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Fig. 7. Schematic drawing of top f l ange  assembly. 



Fig. 8. View of t o p  flange assembly and counterflow heat exchanger. 
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A solenoid-actuated v e r t i c a l  ac t ing  s t i r r i n g  mechanism f o r  s t i r r i n g  

It con- t h e  ba th  l i q u i d  passes through t h e  center  of t h i s  3/4 in .  tube.  

s ists  of a 1/16 i n .  diam s t a i n l e s s  s teel  rod with a 1/8 i n .  O.D. s t a i n -  

less s t e e l  housing. 

inner  v e s s e l  while t h e  1/16 in .  rod runs a l l  t h e  way t o  t h e  base of t h e  

c ryos t a t .  S t i r r i n g  i s  produced by four  c i r c u l a r  copper d i sc s  soldered 

t o  t h e  rod a t  an angle of about 30' from t h e  hor izonta l .  These d i sc s  

may be seen i n  Figs .  8 and 11. 

The housing extends t o  j u s t  below the  neck of t h e  

The armature of t h e  solenoid i s  a 4 i n .  length of 114 i n .  i r o n  rod 

It i s  enclosed i n  a length of soldered t o  t h e  t o p  of t h e  1/16 in .  rod. 

3/8 i n .  O.D. copper tubing which i s  at tached t o  t h e  o u t l e t  l i n e  of t h e  

c ryos t a t  with s tandard tube f i t t i n g s .  

t h e  outs ide  of t h i s  3/8 in .  tubing. 

The solenoid c o i l  i s  wound on 

A mechanical-electr ical  timing c i r c u i t  ac tua t e s  t h e  solenoid a t  i n -  

t . e rva ls  of s eve ra l  seconds, r a i s i n g  t h e  s t i r r e r  about 3/4 of an inch; 

t h e  solenoid i s  deact ivated a f t e r  about 2 sec and t h e  s t i r r e r  f a l l s  

back under i t s  own weight, The puls ing c i r c u i t  i s  described i n  a l a t e r  

s ec t ion ,  

The annular space between t h e  s t i r r e r  rod housing and t h e  314 i n ,  

tube a l s o  serves  as a passage through which t h e  thermocouple wires  and 

r e s i s t ance  thermometer leads are  brought out of t he  c ryos t a t .  T'ney a r e  

brought out of t h e  tabe  a t  a point above t h e  c ryos t a t  through a bare  wire 

thermocouple gland containing a t e f loE  sea l an t ,  
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A 1/2 i n .  O . D .  s t a i n l e s s  s t e e l  tube i s  s i l v e r  soldered i n t o  t h e  

t o p  f lange and serves  a s  an openhg  f o r  i n s e r t i n g  t h e  vacuum insu la t ed  

t r a n s f e r  l i n e  from t h e  hydrogen s to rage  dewar (see Fig .  6 ) .  The upper 

end of t h i s  tube i s  f i t t e d  with a 1/2 x 3/8 i n .  s t a i n l e s s  s t e e l  Swagelok 

reducing union which i s  bored through t o  r ece ive  t h e  3/8 i n ,  ou te r  jack- 

e t  of t h e  t r a n s f e r  l i n e .  When inse r t ed ,  t h e  t r a n s f e r  l i n e  extends t o  a 

point  i n  t h e  neck of t h e  inner  v e s s e l  and i s  sea l ed  a t  t h e  reducing 

union by t h e  3/8 i n .  Swagelok f i t t i n g ,  using a t e f l o n  f e r r u l e ,  

This method of i n s e r t i n g  and s e a l i n g  t h e  t r a n s f e r  l i n e  proved very 

s a t i s f a c t o r y .  It i s  possible  t o  evacuate t h e  c r y o s t a t  and t r a n s f e r  l i n e  

up t o  t h e  valve on t h e  s torage dewar a f t e r  t h e  t r a n s f e r  l i n e  has been 

in se r t ed .  After t h e  c ryos t a t  i s  f i l l e d  t h e  t r a n s f e r  l i c e  i s  with- 

drawn and t h e  opening i s  sealed off  with a threaded cap which f i t s  t h e  

3/8 i n ,  end of t h e  union. 

A 1/4 i n .  s t a i n l e s s  s t e e l  tube i s  s i l v e r  soldered i n t 2  t h e  t o p  

f l ange  and extends t o  a point  j u s t  below t h e  neck; it serves  as an open- 

ing  f o r  i n s e r t i n g  a l i q u i d  l e v e l  probe which i s  described l a t e r .  

The remaining l i n e s  passing through t h e  t o p  f lange a r e  t h e  vapor 

r e c i r c u l a t i n g  l i n e s  and t h e  l i q u i d  sampling l i n e .  These a r e  described 

below. 

C .  VAPOR RECIRCULATING SYSTEM 

1. General 

The vapor r e c i r c u l a t i n g  system (see  Fig. 9 )  i m l u d e s  t h e  e q u i l i b -  
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Fig. 9. Schematic diagram of vapor r e c i r c u l a t i n g  system. 
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rium c e l l ,  counterflow heat  exchanger, volume regu la to r ,  vapor sample 

t r a p ,  magnetic pump, pressure  gage, flow meter, and assoc ia ted  valves  

and tubing.  One eighthinch O.D.  copper tub ing  connects t h e  d i f f e r e n t  

p a r t s  of t h e  loop. The i n t e r n a l  volume of t h e  loop has been kept a s  small  

as poss ib le  so t h a t  t he  t o t a l  amount of vapor i n  t h e  loop can be r e c i r -  

cu la ted  i n  a minimum of t ime. The t o t a l  volume of t h e  loop, including 

t h e  equilibrium c e l l ,  i s  estimated t o  be 180 cc .  

2- Equilibrium C e l l  

The equilibrium c e l l  (Figs .  10 and 11) was machined from a 2-1/2 i n .  

O.D. bar  of free-machining copper. It i s  d r i l l e d  t o  an in s ide  diameter 

of 1 i n .  and f i t t e d  with a screwed cap a t  t h e  top ;  g iv ing  it an i n t e r n a l  

volume of about 55 cc.  Short lengths  of 1/8 i n .  and 3/16 i n .  tub ing  a r e  

s i l v e r  soldered d i r e c t l y  t o  t h e  c e l l  and serve  a s  openings f o r  i n s e r t i n g  

t h e  1/16 i n ,  l iqu id  sample l i n e  and t h e  1/8 i n .  vapor c i r c u l a t i n g  l i n e s ,  

This allows the  f i n a l  soldered j o i n t  t o  be made along t h e  tub ing  and 

permits disassembly and reassembly without hea t ing  t h e  e n t i r e  equi l ibr ium 

c e l l .  Before the  f i n a l  connections were made, t h e  cap was screwed on 

and sea led  around t h e  t o p  with s o f t  so lde r .  

Small lumps of copper wool were placed i n s i d e  t h e  equi l ibr ium c e l l  

a t  t h e  t o p  and bottom. A t  t h e  bottom t h i s  se rves  t o  break up t h e  vapor 

bubbles as they en te r ,  and a t  t h e  t o p  it he lps  t o  prevent l i q u i d  drop- 

l e t s  from being c a r r i e d  out with t h e  vapor. 

The l i qu id  sampling l i n e ,  a 1/16 i n .  O.D. x 0.004 i n .  I . D .  s t a i n -  

l e s s  s t e e l  c a p i l l a r y  l i n e ,  passes through t h e  cap of t h e  c e l l  and reaches 
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Liquid Sample Line 
V16"O.D. x 0.004" I. D. 

Vapor Outlet Line 
V8" O.D. Copper Tubing 

Silver Soldered Joints 

3/16" O.D. Copper Sleeve 
V8"O.D. Stainless Sleeve 

Platinum Resistance 

Resistance Thermo 

Sleeve 

Vapor In le t  Line 
1/8" O.D. Copper Tubing 

Fig. 10. Equilibrium c e l l .  



Fig. 11. View of equilibrium cell assembly. 
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a point  j u s t  above t h e  copper wool a t  t h e  bottom. This l i n e  was s i l v e r  

soldered t o  t h e  top  f lange  of the  c ryos ta t  where it passes through and 

serves  as t h e  primary support for t h e  equilibrium c e l l  i t se l f .  

The 1/8 i n .  copper tube carrying t h e  incoming vapor i s  coiled around 

t h e  equilibrium c e l l  f o r  about f i v e  turns ,  providing a s u f f i c i e n t  length 

t o  insure  t h a t  t h e  r e t u r n  vapor i s  cooled t o  t h e  ba th  temperature be- 

f o r e  it re-en ters  t h e  equilibrium c e l l .  A c o i l  i s  a l s o  provided i n  

t h i s  l i n e  a t  t h e  ni t rogen reservoi r  on t o p  of t h e  c ryos t a t  t o  precool 

t h e  vapor and reduce t h e  heat load brought about by t h e  r ec i cu la t ion .  

The incoming and outgoing vapor l i n e s  a r e  wound toge ther  on a 

sho r t  length of 2-1/2 in .  O.D. aluminum tubing t o  form a h e l i c a l  counter- 

flow heat  exchanger i n  t h e  neck of t h e  c ryos t a t  (see Fig.  8) .  A cover 

i s  placed over t h e  bottom of the aluminum tubing t o  fo rce  t h e  bo i l -o f f  

from t h e  hydrogen bath t o  flow through t h e  annular space between t h e  

neck and t h e  heat  exchanger, fu r the r  reducing t h e  heat  ca r r i ed  i n  by 

+,he incoming vapor. 

To keep t h e  heat  flow down t h e  copper tubes t o  a minimum, a 6 in .  

length of s t a i n l e s s  s t e e l  tubing has been s i l v e r  soldered i n t o  each 

l i n e  j u s t  below t h e  f lange (see Fig.  8) .  

A s  t h e  r e c i r c u l a t i n g  vapor flows out of t h e  c ryos t a t  it passes 

f i rs t  through a small  flow meter which serves  pr imar i ly  t o  ind ica t e  

whether t h e  magnetic pump i s  operating and c i r c u l a t i n g  t h e  vapor a t  t h e  

des i red  rate - 
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3. Volume Regulator 

After  leaving t h e  flow meter t h e  vapor flows through a f l o a t i n g -  

p i s ton  volume regula tor  (Fig.  12) .  

c i r c u l a t i o n  loop a t  one end, while t h e  o ther  end i s  connected, through 

This device i s  connected t o  t h e  

a length of f i n e  c a p i l l a r y  tubing, t o  valves  which open e i t h e r  t o  t h e  

vent o r  t o  the  high pressure  helium supply. By slowly withdrawing o r  

admitt ing helium gas through t h e  c a p i l l a r y  tub ing  t h e  f l o a t i n g  p is ton  

can be moved backward o r  forward, causing a small  change i n  t h e  pres-  

sure  in s ide  the  c i r c u l a t i o n  loop, without changing t h e  t o t a l  composi- 

t i o n  of i t s  contents .  It i s  used t o  make s l i g h t  adjustments i n  pressure  

a s  t he  mixture approaches equilibrium, and t o  maintain t h e  pressure  i n  

t h e  loop constant a s  t h e  l i q u i d  sample i s  withdrawn. 

4. Vapor Sample Trap 

The vapor flows from t h e  volume regula tor  t o  t h e  vapor sample t r a p  

which i s  made of two t i g h t l y  would c o i l s  of 1/4 i n .  copper tub ing  (see 

Fig.  16)0 The two c o i l s  a r e  connected t o  a t e e  i n  t h e  center ,  which 

i s  i n  t u r n  screwed on t o  t h e  i n l e t  of t h e  vapor sample valve A.  This 

arrangement provides a minimum of dead space between t h e  flow path of 

t h e  gas i n  t h e  loop and t h e  valve po r t ;  t h i s  space i s  f u r t h e r  reduced 

by i n s e r t i n g  a copper bushing i n  t h e  valve i n l e t .  The reduced dead 

space i s  des i r ab le  a s  it w i l l  conta in  gas which i s  not r e c i r c u l a t e d  and 

does not have the  equilibrium composition. The valves  D and E on t h e  

outs ide  ends of t h e  c o i l s  se rve  t o  i s o l a t e  a po r t ion  of t h e  vapor and 
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Silver Sol der 
1/16" 0.D.X 0.004 1.D 
Stainless Capillary Tube 

Tube x 1/8" 0.0. Tube 

Swagelok Male Connector 
1/2" N.P.T. x 1/4"0.D. Tubing 

Brass Piston 

wagelok Male Connector 
1/8" N.F!T.xl /8" O.D. Tubing 

Fig. 12. Float ing p i s t o n  volume regula tor .  



42 

permit t h e  sample t o  be withdrawn without reducing t h e  pressure  i n  t h e  

equilibrium c e l l .  The small  diameter c a p i l l a r y  tub ing  between A and B 

t h r o t t l e s  t h e  flow of vapor a s  t he  sample is  withdrawn. 

5 .  Magnetic Pump 

To c i r c u l a t e  t h e  vapor wi th in  t h e  loop a magnetically operated,  

double -act ing 

The completed 

shown i n  Fig.  

pump has been constructed,  based on a design by S te rne r .  52 

pump i s  shown i n  Fig.  13, while a schematic diagram i s  

9. The body of t h e  pump was machined from a 1-1/2 i n .  

diam round brass  bar .  

and t h e  ends threaded t o  rece ive  t h e  s t e e l  rods on which t h e  c o i l s  a r e  

wound. 

i n t o  t h e  body a s  shown i n  t h e  f igu re .  

from a tef lon-coated magnetic s t i r r i n g  bar of t h e  type used by chemists 

t o  s t i r  mixtures enclosed i n  g l a s s  ves se l s .  Two sleeves,  having diam- 

e t e r s  s l i g h t l y  l e s s  than  t h a t  of t h e  cy l inder ,  a r e  machined on t h e  t e f -  

lon, and serve a s  a s e a l  f o r  t h e  p i s ton .  

c o i l s  a r e  wound a r e  sealed t o  t h e  body with aluminum gaskets .  

The in s ide  i s  d r i l l e d  t o  a diameter of 3 /8  i n .  

Four small  check valves with 1/8 i n .  pipe threads  a r e  screwed 

The p i s t o n  i n  t h e  pump i s  made 

The s t e e l  rods on which t h e  

The mechanical-electr ical  puls ing c i r c u i t  for t h e  electromagnets 

i s  b u i l t  around a small  d-c servomotor and cam operated switch which 

a l t e r n a t e l y  changes t h e  d i r e c t i o n  of cur ren t  flow i n  t h e  electromagnets, 

causing t h e  p is ton  t o  move r ap id ly  back and f o r t h .  

ing a c t i o n  can be in fe r r ed  from t h e  arrangement of t h e  check valves .  

The mechanical-electr ical  pu ls ing  c i r c u i t  i s  descr ibed i n  d e t a i l  i n  a 

l a t e r  s ec t ion .  

The r e s u l t i n g  pump- 
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Flg. 13. 'Jlew of magnetic pmp. 
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The current  flow i n  t h e  electromagnets i s  reversed about four  t imes 

per second. 

flow r a t e  of between 200 and 300 cc/min a t  t h e  pump. 

f i c i e n t  t o  c i r c u l a t e  a l l  of t h e  vapor i n  t h e  loop i n  a per iod of s e v e r a l  

minutes and insures a r ap id  approach t o  equi l ibr ium. 

With a p i s ton  t r a v e l  of about 1/2 i n .  t h i s  provides a volume 

This  r a t e  i s  su f -  

The pump performance i s  independent of t h e  pressure  wi th in  t h e  loop. 

The pump has been used a t  pressures  up t o  500 p s i a ;  however i t s  maximum 

pressure  i s  l imited only by t h e  s t r eng th  of t h e  mater ia l s  of which it is  

constructed.  The t e f l o n  p i s ton  i s  s e l f - l u b r i c a t i n g  and t h e r e  a r e  no ex- 

t e r n a l  s e a l s  so t h a t  no substances a r e  present  t o  contaminate t h e  vapor 

a s  it flows through t h e  pump. 

It has been run f o r  a t o t a l  of 300 h r  o r  more without breakdown, and 

shows no s igns  of p i s ton  wear. 

6.  Charging System 

Standard high pressure  cy l inders  of hydrogen and helium gas a r e  

used t o  charge t h e  c i r c u l a t i o n  loop. 

p a r t  of t h e  vapor-liquid mixture i s  condensed i n t o  t h e  equi l ibr ium c e l l  

by admit t ing pure hydrogen gas a f t e r  t h e  c e l l  has  been cooled. 

quant i ty  of hydrogen charged i n t o  t h e  loop i s  est imated from t h e  pres -  

su re  drop i n  a 1500 cc charging cy l inder  included i n  t h e  charging sys-  

tem. 

system so t h a t  t h e  charging l i n e s  and c i r c u l a t i o n  loop may be evacuated 

before  hydrogen i s  added. 

The l i q u i d  hydrogen which forms 

The 

The charging system i s  connected through a valve t o  t h e  vacuum 
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D. TEMPERATURE CONTROL SYSTEM 
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1. General 

Steady temperatures over t h e  e n t i r e  range of i n t e r e s t  a r e  obtained 

by con t ro l l i ng  t h e  vapor pressure of a bath of pure l i q u i d  hydrogen. A 

schematic diagram of t h e  vapor pressure con t ro l  system i s  shown i n  Fig.  

14, and t h e  con t ro l s  on t h e  f ront  panel a r e  shown i n  Fig.  15. 

desc r ip t ion  of t h e  e l e c t r i c a l  c i r c u i t  i s  contained i n  a l a t e r  sec t ion .  

A f u r t h e r  

The pressure i n  t h e  cryostat  i s  he ld  constant  by balancing it 

aga ins t  an a r t i f i c i a l  atmosphere contained i n  a c losed volume V (Fig. 

14) maintained a t  constant temperature i n  a water ba th .  The pressure  

i s  balanced automatical ly  by a solenoid valve K operated by a mercury 

switch S i n  t h e  form of a U-tube. The mercury switch i s  machined from 

a 1 i n .  t h i c k  block of Plexiglas;  it can be seen i n  Fig.  15. The mer- 

cury passages a r e  1/8 i n .  diam and t h e  e l e c t r i c a l  contac ts  a r e  provided 

by t h r e e  No. 10-32 machine screws with small  wires soldered i n t o  t h e  

t i p  and pro jec t ing  i n t o  t h e  mercury passages. For t h e  contact  which 

i s  made and broken frequent ly ,  platinum wire i s  used; it has  been 

found t h a t  t h e  mercury w e t s  copper w i r e ,  causing e r r a t i c  funct ioning 

a t  t h e  point  of contac t .  Small tube  f i t t i n g s  with O-ring s e a l s  a r e  

used t o  s e a l  t h e  copper tubing t o  t h e  P lex ig las .  

The r e l a y  operated by the mercury switch is  powered by a s i x  v o l t  

dry c e l l ,  and it was found tha t  a small discharge occurred a t  t h e  

mercury contact  when t h e  switch opened and closed.  This has been min- 
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Fig. 14.  Schematic diagram of vapor pressure c o n t r o l  system. 
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pressure c o n t r o l  system. 
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imized by connecting a capac i tor  across  t h e  so lenoid  c o i l .  

t h e  spark from coming i n t o  contact  with hydrogen t h e  space i n  t h e  U- 

tube above the  mercury i s  f i l l e d  with vacuum pump o i l  of low vapor pres-  

sure .  

by a sudden pressure change, t r a p s  a r e  placed i n  t h e  l i n e s  j u s t  above t h e  

U-tube. 

To prevent 

To prevent t h e  mercury and o i l  from being forced  i n t o  t h e  system 

2. Method of Operation 

The operat ion of t h e  system i s  a s  follows (see Fig.  14 ) .  The de- 

s i r e d  vapor pressure of t h e  hydrogen ba th  i s  communicated t o  t h e  closed 

volume V by opening valve A, c los ing  valves  C,D,G,H,  and J, and allow- 

ing  t h e  vapor pressure  i n  t h e  system t o  reach t h e  des i red  l e v e l .  

A i s  then  closed and valve C y  which i s  a very f i n e  metering valve with 

a micrometer-type handle, i s  opened j u s t  enough t o  allow the  hydrogen 

bo i l -o f f  t o  flow out,  with only a s l i g h t  tendency f o r  t h e  pressure  t o  

r ise i n s i d e  the system. A s  t h e  pressure  r i s e s  it c loses  t h e  mercury 

switch S, actuat ing t h e  r e l a y  R which i n  t u r n  a c t i v a t e s  t h e  normally 

closed solenoid valve K, allowing t h e  pressure  i n  t h e  system t o  drop; 

t h i s  opens the  mercury switch,  causing t h e  so lenoid  valve t o  c lose ,  and 

t h e  pressure s t a r t s  t o  r ise.  The cycle  i s  then  repeated.  

Valve 

Valve B is a very f i n e  metering valve with a micrometer-type han- 

d le ,  t h e  ou t l e t  of  which i s  screwed i n t o  t h e  i n l e t  of t h e  solenoid 

valve; it serves t o  t h r o t t l e  t h e  vapor flow through t h e  solenoid valve 

K and prevent sharp pressure  f l u c t u a t i o n s  a s  t h e  solenoid opens and 
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c loses .  

t h e  needle valve B and t h e  port  of t h e  solenoid valve, s o  t h a t  undue 

pressure  f l u c t u a t i o n s  a r e  not caused by a flow of gas i n t o  t h i s  space 

after t h e  solenoid c loses .  

It i s  important t o  have t h e  smallest  poss ib l e  volume between 

By c a r e f u l l y  ad jus t ing  valves B and C it i s  poss ib le  t o  maintain 

s teady pressures  i n  t h e  system without f requent  opening and c los ing  of 

t h e  solenoid valve.  The micrometer-type handles on B and C a r e  u s e f u l  

i n  obtaining reproducible  valve s e t t i n g s  over a wide range of openings. 

By manipulating valves G and H, smal l  q u a n t i t i e s  of gas can be 

added t o  or withdrawn from t h e  f ixed  volume V, causing a small r ead jus t -  

ment i n  t h e  vapor pressure  and temperature of t h e  l i q u i d  i n  t h e  c ryos t a t .  

By c a r e f u l  s e t t i n g  of t h e  cont ro ls  it i s  poss ib l e  t o  maintain t h e  pres-  

sure s teady t o  wi th in  l e s s  than a mil l imeter  of mercury; using l i q u i d  

hydrogen i n  t h e  c ryos t a t ,  t h i s  provides temperature con t ro l  t o  wi th in  

f0.0l0K, or  b e t t e r ,  over t h e  e n t i r e  range of i n t e r e s t .  Through t h e  use 

of valves  G and H it i s  possible  t o  compensate f o r  any tendency towards 

temperature d r i f t ,  and temperatures i n  t h e  region of 20" can be held 

e s s e n t i a l l y  constant  f o r  a s  long as t h e  l i q u i d  hydrogen remains i n  t h e  

c ryos t a t .  

The system funct ions  equal ly  w e l l  a t  pressures  below atmospheric. 

To obta in  pressures  below atmospheric (temperatures below t h e  normal 

b o i l i n g  temperature),  valve E i s  closed, and valves  F and D a r e  opened, 

and t h e  o ther  con t ro l s  a r e  manipulated as before .  

valve which allows t h e  vapor t o  be  pumped o f f  r a p i d l y  t o  reduce t h e  pres -  

Valve D i s  a l a rge  
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su re  i n  t h e  c ryos ta t .  Af te r  t h e  des i red  pressure  i s  reached, D i s  par-  

t i a l l y  o r  completely closed and valves  B and C ad jus ted  a s  before  t o  

maintain t h e  pressure constant .  

E. SAMPLING SYSTEM 

1. Vapor Sampling 

A schematic diagram of t h e  sampling system i s  shown i n  Fig.  16, 

and a photograph of t h e  sampling bank on t h e  c o n t r o l  panel i s  shown i n  

Fig.  17. 

The vapor sampling system presented no p a r t i c u l a r  problems i n  de- 

s ign  and construct ion.  

has been described above. A shor t  length of 1/16 i n .  O.D. x 0.004 i n .  

I.D. c a p i l l a r y  tubing i s  used between t h e  vapor sampling valve A (Fig.  

16) and point  B t o  allow t h e  vapor sample t o  be withdrawn slowly when 

t h e  pressure  i n  t he  vapor t r a p  i s  r e l a t i v e l y  high.  The remainder of 

t h e  tubing i s  1/8 i n .  O.D. copper tub ing  joined by Swagelok tube f i t -  

t ings . 

The vapor sample t r a p  i n  t h e  c i r c u l a t i o n  loop 

The check valve C opens a t  a pressure of about 1 - 5  psig,  prevent- 

i ng  a pressure build-up i n  t h e  g l a s s  sample b o t t l e s .  It has an O-ring 

s e a l  which, when coated with vacuum grease,  provides a s a t i s f a c t o r y  

vacuum s e a l  and allows t h e  e n t i r e  system t o  be  evacuated t o  a low pres-  

su re .  

2 .  Liquid Sampling 

The ou t l e t  of t h e  l i q u i d  sampling bank i s  similar t o  t h a t  of t h e  
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Fig. 16. Schematic diagram of sampling system. 
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vapor sampling bank. A small  flow meter has 

from t h e  check valve t o  ind ica te  t h e  flow of 

been included downstream 

gas through t h e  sampling 

system. This was included So t h a t  t h e  r a t e  of flow of t h e  sample can 

be estimated and t h e  first port ion t o  reach t h e  sample bank can be d i s -  

cared. I n  addi t ion,  t h e  dead space on t h e  i n l e t  s i d e  of t h e  valves  R, 

S, and T has been reduced t o  a minimum by i n s e r t i n g  a bushing i n t o  t h e  

valve i n l e t ;  t h i s  was done t o  reduce t o  a minimum t h e  quant i ty  of gas 

which would be trapped i n  t h i s  space a s  t h e  sample f i r s t  flows i n t o  t h e  

l i n e s ,  s ince  t h i s  gas w i l l  flow i n t o  t h e  b o t t l e s  when t h e  valves  are 

opened. 

i 

The f irst  por t ion  of t h e  l i qu id  sampling l i n e  i s  a length of ap- 

proximately 72 i n .  of 1/16 i n .  O.D. x 0.004 i n .  I . D .  s t a i n l e s s  s teel  

c a p i l l a r y  tubing. This l i n e  i s  soldered i n t o  t h e  t o p  f lange  of t h e  

c ryos t a t  and i n t o  t h e  equilibrium c e l l  and serves  as t h e  primary sup- 

po r t  f o r  t h e  c e l l .  After  t h e  l i n e  comes out of t h e  c ryos t a t  it passes 

t o  t h e  con t ro l  panel where it enters  a valve J (Fig. 16), which serves  

as t h e  on-off con t ro l  f o r  l iqu id  sampling. J u s t  downstream of t h i s  

valve i s  a very f i n e  metering valve K which can be used t o  f u r t h e r  

t h r o t t l e  t h e  flow of t h e  sample. Beyond t h i s  valve are two loops, each 

about 72 i n .  long, which can be bypassed by opening valves L and M. 

The va r i ab le  length of t h e  cap i l l a ry  tubing and t h e  f i n e  metering valve 

K provide c lose  con t ro l  over the flow of t h e  gas, and allow t h e  sample 

t o  be withdrawn a t  a very low flow rate with widely varying pressures  

i n  t h e  equilibrium c e l l .  
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The need f o r  0.004 i n .  I . D .  c a p i l l a r y  tub ing  was determined by 

a r b i t r a r i l y  s e t t i n g  t h e  des i red  r a t e  of flow of t h e  l i q u i d  sample and 

ca l cu la t ing  the diameter and length required t o  produce t h i s  flow over 

a given range of equilibrium c e l l  p ressures .  

The system has performed q u i t e  well ,  wi th  mul t ip le  samples taken  

from t h e  same batch of l i q u i d  having compositions whose d i f f e rences  a r e  

wi th in  t h e  limits of experimental e r r o r  of t h e  mass spectrometer.  

3. Sample Bot t les  

Samples a re  co l l ec t ed  i n  glass b o t t l e s ,  f i t t e d  with Pyrex vacuum 

stopcocks, having an i n t e r n a l  volume of about 20 t o  30 cc,  and male 12/ 

30 standard taper  j o i n t s  a t  t h e  o u t l e t .  A t o t a l  of 60 of t h e s e  b o t t l e s  

have been used and no problems of leakage have occurred. S ix  of t h e s e  

b o t t l e s  can be seen a t tached  t o  t h e  sampling bank i n  F ig .  17. 

The t r a n s i t i o n  from metal tubing t o  t h e  g l a s s  j o i n t s  required f o r  

The 1/8. t h e  sample b o t t l e s  i s  made as shown i n  t h e  d e t a i l  i n  Fig.  16. 

i n .  copper l i nes  from valves  R,S,T,U,V, and W a r e  soldered i n t o  a metal  

bushing which i s  i n  t u r n  soldered i n t o  a 1/2 i n .  Swagelok bulkhead adapter  

a t tached  t o  the f r o n t  panel .  The female g l a s s  j o i n t  i s  a t tached  t o  t h i s  

f i t t i n g  by a short  p iece  of tygon p l a s t i c  tub ing  and sea led  with vacuum 

grease.  This proved t o  be a highly s a t i s f a c t o r y  arrangement s ince  t h e  

p l a s t i c  tubing provides a c e r t a i n  amount of f l e x i b i l i t y  which would be 

absent i n  a g lass  t o  metal s e a l  of t he  Kovar type .  

The e n t i r e  sampling system, with sample b o t t l e s  a t tached  can be 
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without appreciable  pressure  
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few microns and l e f t  f o r  a week or  more 

increase.  

F . INSTRUMENTATION 

1. Temperature Measurement 

The equilibrium temperature i s  measured wi th  a Leeds and Northrup 

type  8163 platinum r e s i s t a n c e  thermometer i n  conjunction with a Leeds 

and Northrup type  G - 2  Mueller br idge.  The br idge  can be seen a t  t h e  

l e f t  of F ig .  18. 

The n u l l  de tec t ing  equipment assoc ia ted  wi th  t h e  br idge includes 

a Leeds and Northrup type 2284-d galvanometer, hung i n  a J u l i u s  suspen- 

s ion,  and a type  2100 lamp and sca l e .  The lamp and s c a l e  a r e  shown a t  

t h e  r i g h t  of Fig.  18 and t h e  galvanometer and suspension appear i n  Fig.  

19. 

The platinum r e s i s t a n c e  element i s  i n s e r t e d  i n t o  a hole  d r i l l e d  

It can be seen i n  Figs .  10 and 

Four 30 gage copper wires serve as t h e  l eads  t o  t h e  r e s i s t a n c e  

i n  t h e  w a l l  of t h e  equilibrium c e l l .  

11. 

element and a r e  passed out of t he  system through the  packing gland 

shown i n  Fig.  7. 

To determine t h e  temperature d i s t r i b u t i o n  throughout t h e  c ryos t a t ,  

f i v e  d i f f e r e n t i a l  thermocouples of gold-cobalt  vs .  copper have been used. 

This  combination of metals provides a g r e a t e r  s e n s i t i v i t y  (about 15 pv/ 

degree)  a t  l i q u i d  hydrogen temperatures than  o ther  commonly used metals. 
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Fig. 19. Galvanometer and suspension. 
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The loca t ions  of these  thermocouples a r e  shown schematical ly  i n  Fig.  20, 

and t h e  thermocouple wires may be seen i n  Figs .  8 and 11. They a r e  made 

of 30 gage wire and a r e  a l l  referenced t o  t h e  platinum r e s i s t a n c e  t h e r -  

mometer; t hus  they i n d i c a t e  t h e  d i f f e rence  i n  temperature between t h e  r e -  

s i s t ance  element and var ious poin ts  i n s i d e  t h e  c r y o s t a t .  Thermocouples 

1, 3, 4, and 5 a r e  wrapped on t h e  vapor r e c i r c u l a t i n g  l i n e s ,  while 2 i s  

in se r t ed  i n  a small ho le  i n  t h e  wa l l  of t h e  equi l ibr ium c e l l .  

The EMF'S developed by these  thermocouples a r e  measured by a Leeds 

and Northrup type K - 3  potentiometer with a type  9834 e lec t ron ic  d-c n u l l  

de t ec to r .  

Fig.  18. 

The potentiometer and n u l l  de tec tor  appear a t  t h e  r i g h t  of 

2 .  Pressure Measurement 

The equilibrium pressures  i n  t h e  vapor r e c i r c u l a t i n g  loop a r e  meas- 

ured on a 0-500 psig,  16 i n ,  ca l ib ra t ed  Heise gage which appears on t h e  

r i g h t  of t h e  cont ro l  panel i n  Fig.  3 .  

The vapor pressure of t h e  hydrogen i n  t h e  c ryos t a t  i s  measured with 

a 0-200 psig,  16 i n , ,  c a l i b r a t e d  Heise gage for pressures  above atmos- 

pheric,  and with a 0-30 i n .  absolute  mercury manometer for pressures  

below atmospheric. 

All other  pressures  a r e  measured with cocvent ional  bourdon tube  

gages 

3. Liquid Level Probe 

The l i qu id  l e v e l  probe i s  shown schematical ly  i n  F ig .  21. It con- 
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o Denotes Thermocouple 
Locat ion 

t -/ / \ 

Fig. 20. Location of differential thermocouples. 
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Pot en t i omete r 
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3V. Dry Cell 

0-30 Milliammeter 

V8" O.D. x 0.030" Wall Stainless 
Steel Tubing 

Tef Ion Coated Wire 

Tef Ion Insulation Around Soft- 
Solder Joint 

Allen Bradley 1/10 Watt, IOOS1 
Carbon Resistor 

Lead Wire Coiled To Reduce 
Heat Flow To Tubing 

Silver Solder 

Fig. 21. Liquid leve l  probe. 
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sists of a small  carbon r e s i s t o r  a t tached  t o  t h e  end of a length  of 

1/8 i n .  O.D. x 0.030 i n .  wa l l  s t a i n l e s s  s t e e l  tub ing  and connected ex- 

t e r n a l l y  t o  a ba t t e ry ,  a potentiometer, and a mil l iameter .  One l ead  t o  

t h e  r e s i s t o r  i s  provided by a small  t e f lon-coa ted  wire  passing through 

t h e  i n s i d e  of t h e  tubing, with t h e  r e t u r n  provided by t h e  tub ing  i t s e l f .  

The upper end of t h e  1/4 in .  tube  i n t o  which t h e  probe i s  in se r t ed  

i s  f i t t e d  with a 1/4 x l/8 i n .  Swagelok s t a i n l e s s  s t e e l  reducing union, 

bored through t o  allow passage of t h e  1/8 i n .  tube  ( see  Fig.  7 ) .  The 

1/8 i n .  tube f i t t i n g  i s  provided with t e f l o n  f e r r u l e s  which provide a 

s e a l  around t h e  probe and allow it t o  be moved up and down f r e e l y  with- 

out  leakage. I n  p r a c t i c e  t h e  l i qu id  l e v e l  i s  measured only upon f i l l i n g ,  

a f t e r  which t h e  probe i s  withdrawn, and t h e  opening i s  sea led  of f  with 

a threaded cap. 

The probe operates  on t h e  p r inc ip l e  of a change i n  t h e  r e s i s t a n c e  

of t h e  carbon r e s i s t o r  with temperature. In  t h e  region below about 1 0 0 ° K  

t h e  r e s i s t a n c e  increases  rapidly with a decrease i n  temperature,  reach- 

ing  a value of about twice i t s  room temperature value a t  20". 

t h e  resistor e n t e r s  t h e  i i qu id  t h e  small cur ren t  flow serves  t o  keep 

i t s  temperature wel l  above tha t  of t h e  ba th  so t h a t  i t s  r e s i s t a n c e  i n -  

c reases  only s l i g h t l y .  When the  r e s i s t o r  i s  immersed i n  t h e  l i q u i d  i t s  

r e s i s t a n c e  r i s e s  sharply and a drop i n  cur ren t  T l o ~  i s  r e g i s t e r e d  by 

t h e  mill iarneter.  It is important t o  have t h e  r e s i s t o r  i n su la t ed  a s  

much a s  poss ib le  aga ins t  heat flow t o  t h e  tubing,  and f o r  t h i s  purpose 

t h e  lead  which i s  soldered t o  t h e  tubing i s  c o i l e d  seve ra l  t u r n s  t o  i n -  

Before 
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crease  i t s  length.  

This device works q u i t e  we l l  and determines t h e  l i q u i d  l e v e l  t o  

wi th in  about 1/4 i n .  

gen temperatures, it can a l s o  be used t o  determine t h e  l e v e l  of l i q u i d  

n i t rogen  i n  the  c ryos t a t .  

Although somewhat l e s s  s e n s i t i v e  a t  l i q u i d  n i t r o -  

4 .  E l e c t r i c a l  C i r c u i t s  

The e l e c t r i c a l  c i r c u i t s  assoc ia ted  with t h e  magnetic pump, s t i r r i n g  

mechanism, and vapor pressure cor , t rol  system a r e  shown i n  Fig.  2 2 0  Since 

t h e  r e l ays  and switches used i n  these  c i r c u i t s  produce sparks  on opening 

and closing,  it i s  des i r ab le  t o  have them s i t u a t e d  a s  f a r  a s  poss ib le  

from t h a t  port ion of t h e  equipment containing l i q u i d  and gaseous hydro- 

gen. A l l  such devices a r e  mounted on a plywood panel placed a t  t h e  op- 

p o s i t e  end of the  room from the  main apparatus .  This assembly i s  shown 

i n  Fig.  23, with t h e  d-c power supply i n  t h e  background, The only spark- 

ing device on the  con t ro l  panel  i s  t h e  mercury switch; t h e  method used 

t o  i s o l a t e  i t s  spark from t h e  hydrogen has been described above. 

The d-c power supply i s  a 6 amp 28 v u n i t  which operates  from ll5 v 

a-c source.  It i s  used t o  supply d-c cur ren t  t o  the  electromagnets on 

t h e  magnetic pump and on t h e  s t i r r i n g  mechanism. 

The operat ion of t h e  con t ro l  c i r c u i t  for t h e  magnetic pump can be 

seen from t h e  diagram. 

threaded ends of t he  electromagnets have t h e  same magnetic p o l a r i t y ,  

so t h a t  a t  ar,y i n s t a n t  t h e  bar  magnet i n s ide  t h e  p is ton  i s  a t t r a c t e d  

During each ha l f  cyc le  of operat ion t h e  two 



t 

\ 

M 
Ti 
R 



64 
I 
1 
I 
I 
I 
I 
I 
E 
1 

Fig. 23. V i e w  of  d-c power supply and e l e c t r i c a l  c o n t r o l  
equipment. 



a t  one end and repe l led  a t  t h e  o ther .  The r e v e r s a l  of cur ren t  flow 

i n  t h e  electromagnets changes t h e i r  p o l a r i t y  and reverses  t h e  d i r e c t i o n  

of motion of t h e  pis ton.  

t h e  r e s u l t i n g  pump speed are varted by means of a small rheos t a t  i n  

s e r i e s  with t h e  motor. 

The speed of t h e  small d-c servo motor and 

The c i r c u i t  for t he  cryostat  s t i r r i n g  mechanism works i n  a manner 

The puls ing  ac t ion  i n  t h i s  case similar t o  t h a t  of t h e  magnetic pump. 

i s  provided by a 110 v synchronous a-c motor which runs a t  constant 

speed. 

on t h e  motor. 

been used. 

The puls ing frequency can only be changed by changing t h e  cam 

C a m s  providing puls ing frequencies  of 6 and 12 c/min have 

The operat ion of t h e  e l e c t r i c a l  c i r c u i t  of t h e  vapor pressure  con- 

t r o l  system has been described b r i e f l y  above. 

t a c t  on t h e  r i g h t  s i d e  of t h e  mercury U-tube i n  F ig .  22 ( l e f t  s ide  i n  

Fig.  15) was included s o  t h a t  a warning device, such as a buzzer, could 

be ac tua ted  i f  an unexpected pressure drop occurs i n  t h e  c ryos t a t  caus- 

i ng  t h e  mercury t o  flow out of t h e  U-tube. It could a l s o  be used i n  

conjunction with a normally open solenoid valve t o  provide a g rea t e r  

degree of automatic cont ro l .  In  t h e  present  work t h e  contact  was not 

used. 

The ex t r a  e l e c t r i c a l  con- 

5.  Water Bath Temperature Control 

The a r t i f i c i a l  atmosphere used i n  t h e  vapor pressure con t ro l  sys- 

tem i s  confined i n  a small s t a i n l e s s  s t e e l  cy l inder  immersed i n  a water 
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bath (see F ig .  14). An Eastern Indus t r i e s  p rec i s ion  temperature regu- 

l a t o r  with a 200 watt  immersion hea ter  i s  used t o  maintain t h e  temper- 

a t u r e  of t h e  bath constant ,  and t h e  water i s  a g i t a t e d  by an a i r -ope-  

ra ted ,  propel ler  type s t i r rer .  This system con t ro l l ed  t h e  temperature 

of t h e  bath t o  wi th in  0 . 1 " C .  

6. Liquid Nitrogen Level Control 

The l e v e l  of t h e  l i q u i d  n i t rogen  a t  t h e  t o p  of t h e  c ryos t a t  i s  

maintained automatical ly  by a Johns and Frame model B l i q u i d  l e v e l  con- 

t r o l l e r .  This system includes a gas cross-charged sensing element which 

extends i n t o  the  bath t o  t h e  point  where t h e  l e v e l  i s  t o  be maintained. 

When t h e  l e v e l  f a l l s  below t b e  t i p  of t h e  sensing element I t  c loses  a 

r e l a y  which ac tua tes  a three-way solenoid valve,  t r ansmi t t i ng  helium 

gas a t  a low pressure t o  t h e  in s ide  of t h e  n i t rogen  s torage  dewar. When 

t h e  des i red  l eve l  is reached t h e  r e l a y  opens, t n e  gas flow i s  shut  o f f ,  

and t h e  excess pressure i n  t h e  dewar i s  r e l eased  through an open port  

i n  t h e  solenoid valve.  

G .  VACUUM SYSTEM 

Two Cenco mechanical vacuum pumps with explosion proof motors a r e  

used i n  t h e  experimental apparatus.  

The f i r s t  of these  pumps i s  a Ryvac model which i s  used pr imar i ly  

t o  evacuate the sampling system. It i s  a l s o  connected tnrougn appro- 

p r i a t e  valves  t o  t h e  c i r c u l a t i o n  loop and t h e  charging system, and t o  

t h e  vacuum jacket of t h e  c r y o s t a t .  This pump i s  capable of evacuating 



t h e  sample b o t t l e s  t o  a pressure of a few microns i n  seve ra l  minutes. 

The performance of t h e  system was v e r i f i e d  by running t r a c e  analyses 

on t h e  mass spectrometer of some of t h e  samples; t hese  showed negl i -  

g i b l y  small quan t i t i e s  of a i r .  

The second vacuum pump, a Hyvac-2 model, i s  used t o  pump a vacuum 

over t h e  hydrogen ba th  t o  obtain temperatures below t h e  normal bo i l ing  

temperature of hydrogen. 

c ryos t a t  and pressure con t ro l  system before hydrogen i s  t r a n s f e r r e d  i n t o  

t h e  c ryos t a t .  

It i s  a l s o  used t o  evacuate and purge t h e  

Since both of t hese  pumps sometimes discharge hydrogen gas, t h e  

o u t l e t s  are f i t t e d  with sho r t  lengths of p l a s t i c  tubing which conduct 

t h e  gas i n t o  t h e  vent system. 

A Stokes model 2 7 6 - ~ c  Mcleod type vacuum gage is  used t o  check t h e  

pressure  i n  t h e  vacuum jacket  of t h e  c ryos t a t .  

H. SAFETY EQUIPMEXK' 

1. General 

The hazards associated with t h e  use of l i q u i d  and gaseous hydro- 

gen may be divided i n t o  t h e  following four  ca tegor ies :  

a .  Extreme Cold.-Liquid hydrogen i s  a t  a temperature of -423.2"F; 

contact  with equipment a t  t h i s  temperature can cause severe damage t o  

sk in  t i s s u e .  

b. Hazards of Pressure Build-up.-One l i t e r  of l i q u i d  hydrogen - -- 

expands t o  a volume of over 800 L of gas a t  room temperature and atmos- 
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pheric  pressure,  t he re fo re  it i s  necessary t o  in su re  t h a t  l i q u i d  hydrogen 

i s  not trapped or i s o l a t e d  i n  any p a r t  of t h e  apparatus  and subsequently 

warmed e 

c .  Flammability. -The upper and lower l imits  of flammabili ty of 

hydrogen i n  air  a r e  75 and 4% by volume. Mixtures of s o l i d  oxygen i n  

l i q u i d  hydrogen a r e  a l s o  p o t e n t i a l l y  explosive.  

taken not o n l y t o  prevent hydrogen from escaping i n t o  t h e  room, but  a l s o  

Precaut ions must be 

t o  preverit air  from coming i n t o  contact  with t h e  l i q u i d ,  where t h e  ox- 

ygen i n  t h e  a i r  might condense arld f r e e z e .  

d. Low Temperature Embrittlemento-Some commonly used s t r u c t u r a l  

mater ia l s ,  notably carbon s t e e l ,  become b r i t t l e  a t  l i q u i d  hydrogen tem- 

pera tures  e 

The sa fe ty  cons idera t ions  followed i n  t h e  design and cons t ruc t ion  

of t h e  apparatus were those recommended by t h e  Nat ional  Bureau of Stand- 

a r d ~ ~ ~  and t h e  'Lfnde CO." 

s u l t  ed s 

Other s a f e t y  referencesL2j43 were a l s o  con- 

2 .  Mater ia l s  of Construction 

Those port ions of t h e  equipment a t  l i q u i d  hydrogen temperature in -  

clude t h e  inner v e s s e l  of t h e  c ryos t a t ,  t h e  equi l ibr ium c e l l ,  a por t ion  

of t h e  tub ing  of t h e  c i r c u l a t i o n  loop, and p a r t  of t h e  l i q u i d  sampling 

l i n e .  These pa r t s  have been described above; they  a r e  made e i t h e r  of 

type 304 s t a i n l e s s  s t e e l  or from copper, both of which a r e  we l l  known 

f o r  t h e i r  s t r u c t u r a l  s t a b i l i t y  a t  low temperatures .  J o i n t s  have been 



made with s o f t  solder ,  s i l v e r  solder,  and h e l i a r c  welding. 

3 .  Vent System 

A l l  por t ions  of t h e  equipment which conta in  hydrogen are completely 

enclosed and sealed aga ins t  t h e  en t ry  of a i r .  A vent system has been 

constructed which conducts a l l  hydrogen discharged from t h e  system t o  

a poin t  above t h e  roof outs ide  t h e  bui ld ing .  This  system cons i s t s  of a 

1-1/2 i n .  c a s t  i r o n  pipe which runs from j u s t  above t h e  apparatus t o  a 

po in t  above t h e  roof of t h e  bui lding.  

f i t t e d  with a conventional swing check valve t o  prevent t h e  back flow of 

a i r  i n t o  t h e  system. 

The upper end of t h i s  pipe i s  

A low pressure supply of nitrogen gas i s  connected t o  t h e  vent sys- 

t e m  so  t h a t  t h e  vent pipe may be purged before  hydrogen i s  placed i n  t h e  

system. This purge system i s  connected through a flow meter on t h e  

f r o n t  panel of t h e  equipment s o  t h e  flow of gas i n t o  t h e  vent pipe can 

be monitored. 

4.  Pressure Relief Devices 

To prevent a dangerous pressure build-up due t o  t h e  warming of 

l i q u i d  hydrogen i n  t h e  system, t h e  c i r c u l a t i o n  loop and t h e  o u t l e t  l i n e  

from t h e  c ryos t a t  a r e  f i t t e d  with rupture  d i sc  assemblies; these  may be 

seen i n  F igs .  9 and 14. The rupture d isc  i s  a t h i n  metal d i sc  designed 

t o  bu r s t  a t  a predetermined pressure.  It i s  mounted i n  a s u i t a b l e  

housing and i n s t a l l e d  i n  t h e  sys tem i n  a manner similar t o  a pipe or 

tube f i t t i n g .  
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The rupture  d i sc  i n  t h e  c i r c u l a t i o n  loop i s  designed t o  b u r s t  a t  

a pressure  of 750 ps ia ,  and t h a t  i n  t h e  c r y o s t a t  o u t l e t  a t  210 ps i a .  

The o u t l e t s  of t he  rupture  d i sc  assemblies a r e  connected t o  t h e  vent 

sys t em. 

5 .  Room Vent i la t ion  

The room i n  which t h e  apparatus was cons t ruc ted  was designed o r i g -  

i n a l l y  f o r  use with heavier- than-air  combustible gases,  with t h e  a i r  

i n l e t  a t  t h e  top of t h e  room and discharge a t  t h e  f l o o r .  This  system 

was modified t o  provide f o r  a i r  i n l e t  a t  t he  f l o o r  and exhaust a t  t h e  

c e i l i n g .  

The framework on which t h e  apparatus  i s  assembled i s  enclosed on 

a l l  four  s ides  and f i t t e d  with an exhaust hood a t  t h e  top .  A i r  i s  con- 

t i n u a l l y  drawn i n t o  t h e  enclosure through openings a t  t h e  base of t h e  

s ides  and back. The back panel i s  hinged t o  allow easy access  t o  t h e  

c ryos t a t  for f i l l i n g  ( see  Fig.  6 ) .  

The a i r  from t h e  exhaust hood and from t h e  ducts  a t  t h e  c e i l i n g  of 

t h e  room i s  withdrawn by an explosion-proof blower and discharged t o  

t h e  atmosphere a t  a point  above t h e  roof of t h e  bui ld ing .  

i s  capable of providing approximately 20 a i r  changes per hour. 

The system 

6. Safe ty  Shielding 

The s t e e l  framework surrounding t h e  c r y o s t a t  i s  l i n e d  on t h r e e  

s i d e s  with sheets  of 1/8 i n .  t h i c k  s t e e l  p l a t e  which a r e  bol ted  i n  

p lace  (see Figs.  5 and 6 ) .  An ex t r a  th ickness  i s  placed d i r e c t l y  i n  



f r o n t  of t h e  c ryos ta t ,  providing a 1/4 i n .  thickness  between t h e  cryo- 

s t a t  and t h e  a rea  normally occupied by the operators .  

door a t  t h e  r e a r  of t h e  assembly i s  made of asbestos  sheet  and i s  

loose ly  fastened.  

steel  channels secured t o  the walls of t h e  room. Th i s  arrangement i n -  

sures t h a t  the  fo rce  of an  explosion i n  the  area of the  c ryos t a t  would 

be d i r ec t ed  toward the  rear of the room, away from t h e  operators .  The 

windows at the rear of  the room have been set i n  rubber mounts so t h a t  

t hey  w i l l  pop out i n  t h e  event of an explosion. 

The panel on t h e  

The e n t i r e  framework i s  he ld  i n  place by means of 

7. E l e c t r i c a l  Equipment 

The solenoid valve i n  t h e  pressure con t ro l  system and t h e  vacuum 

pump motors are explosion-proof. A l l  sparking switches and r e l a y s  

have been removed a s  f a r  as possible  from the c ryos t a t  and placed as 

near f l o o r  l e v e l  as poss ib le .  

The e x i s t i n g  f luorescent  l i g h t s  and e l e c t r i c a l  o u t l e t s  have been 

disconnected and replaced w i t h  explosion-proof equipment. 

8. Hydrogen Storage 

The cyl inder  of hydrogen gas used t o  charge t h e  c i r c u l a t i o n  loop 

i s  s to red  i n  a small aluminum shed outs ide  t h e  bui lding.  It i s  con- 

nected t o  t h e  con t ro l  panel through a l i n e  of 1/2 i n .  schedule 80 

welded s teel  pipe.  

cyl inder ,  and a 750 p s i  rupture d i sc  assembly i s  connected j u s t  down- 

stream. 

The pressure regula tor  i s  a t tached  d i r e c t l y  t o  t h e  

The o u t l e t  of the  rupture  d i sc  i s  connected t o  a 1/2 i n .  vent 
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l i n e  t h a t  runs up t o  a poin t  above t h e  roof of t h e  bu i ld ing .  This pro- 

v ides  f o r  t k e  discharge of t h e  hydrogen gas t o  t h e  atmosphere i n  t h e  

event of a f a i l u r e  i n  t h e  pressure  r egu la to r .  

The l i qu id  hydrogen i s  obtained i n  q u a n t i t i e s  of l 5 O  I i n  Linde 

LSH-150 super- insulated conta iners .  

r e l e a s e  small quan t i t i e s  of hydrogen gas, they  a r e  s t o r e d  i n  a small 

fenced enclosure j u s t  ou ts ide  t h e  bui ld ing ,  and brought i n t o  t h e  room 

only long enough t o  f i i l  t h e  c ryos t a t  a t  t h e  beginning of each run. 

Since t h e s e  conta iners  pe r iod ica l ly  



IV. EXPERIMENTAL PROCEDURES 

A. PREPARATION OF EQUIPMENT 

1. Precooling 

The f irst  s t e p  i n  t h e  preparat ion of t h e  equipment i s  t h e  precool- 

This i s  ing  of t h e  c ryos ta t  and equilibrium c e l l  with l i q u i d  ni t rogen.  

des i r ab le  as it avoids t h e  use of la rge  q u a n t i t i e s  of l i q u i d  hydrogen 

f o r  cooling. The equilibrium c e l l  and r e c i r c u l a t i o n  loop a r e  f irst  

evacuated and purged seve ra l  times with helium t o  insure  t h a t  no a i r  re- 

mains t o  f r eeze  i n  t h e  cap i l l a ry  l i n e s  upon cool ing.  Liquid ni t rogen i s  

then  introduced i n t o  t h e  ins ide  of t h e  c ryos ta t  and i n t o  t h e  n i t rogen  

r e se rvo i r  a t  t h e  top. The rapid vaporizat ion of t h e  ni t rogen as it 

first  e n t e r s  serves  t o  purge much of t h e  oxygen from t h e  system. 

I n  order t o  cool  t h e  equilibrium c e l l  rap id ly ,  enough n i t rogen  i s  

added t o  cover a por t ion  of the c e l l .  The l e v e l  is  measured with t h e  

l e v e l  probe described previously. Because of t h e  high e f f i c i ency  of 

t h e  mult i - layer  i n su la t ion  i n  t h e  c ryos t a t ,  t h e  ni t rogen b o i l s  off  very 

slowly a f t e r  t h e  i n t e r i o r  is cooled t o  l i q u i d  n i t rogen  temperature 

.(estimated r a t e  about 0.04 l / h r ) ;  thus  it i s  des i r ab le  t o  have a means 

of quickly removing t h e  remaining ni t rogen without warming t h e  c ryos t a t .  

This i s  done by i n s e r t i n g  a 1/8 i n .  O.D.  s t a i n l e s s  s t e e l  tube i n t o  t h e  

l i q u i d  l e v e l  probe we l l  and pressurizing t h e  c ryos t a t  with helium, 

fo rc ing  t h e  ni t rogen up t h e  tube. The helium i s  admitted from t h e  

73 
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charging system through t h e  valves  G and H (Fig.  14). 

m i t s  t h e  removal of a l i t e r  of l i q u i d  n i t rogen  i n  a few minutes. 

This  method per- 

2 .  Purging 

Because of t h e  danger of explosion r e s u l t i n g  from mixtures of a i r  

and hydrogen, extreme ca re  i s  taken t o  remove a l l  t r a c e s  of a i r  from t h e  

system before t h e  hydrogen i s  introduced. A s  a f i r s t  s t ep ,  pure helium 

or ni t rogen  gas i s  allowed t o  flow continuously through t h e  vent system 

f o r  approximately 20 min before  t h e  hydrogen i s  introduced; t h i s  i s  done 

through t h e  vent purging system. 

After  the l i q u i d  nitroger,  has been pumped out of t h e  c ryos t a t ,  t h e  

vent valve J (Fig.  14) i s  opened and t h e  c ryos t a t  p ressure  i s  reduced t o  

atmospheric. The l i q u i d  hydrogen dewar i s  then  brought i n t o  t h e  room 

and immediately connected t o  a common ground with t h e  c ryos t a t ,  t o  r e -  

move any s t a t i c  charge from the  system. The vacuum insu la t ed  t r a n s f e r  

l i n e  i s  connected f i r s t  t o  t h e  dewar and then t o  t h e  c ryos t a t  ( see  F ig  

6 ) .  The Swagelok f i t t i n g  with t e f l o n  f e r r u l e s  used t o  s e a l  t h e  t r a n s f e r  

l i n e  where it en te r s  t h e  c ryos t a t  provides a vacuum t i g h t  s e a l  with only 

moderate t igh ten ing ,  without damaging t h e  t r a n s f e r  l i n e  i t s e l f .  The 

vent valve J is then  closed, valves  F, D, and A a r e  opened, and t h e  

c ryos t a t  and vapor pressure  c o n t r o l  system a r e  evacuated. Since t h e  

open end of the  t r a n s f e r  l i n e  i s  i n s i d e  t h e  c r y o s t a t  a t  t h i s  time, t h e  

e n t i r e  t r a n s f e r  l i n e  i s  evacuated up t o  t h e  va lve  on t h e  hydrogen dewar, 

which remains closed.  
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The system is  evacuated t o  a pressure of a f e w  mil l imeters  or l e s s ;  

valve F i s  then closed, and t h e  pressure i s  r a i s e d  t o  atmopsheric by 

slowly admitt ing helium gas through valves  G and H. 

repeated one or more t imes t o  insure t h a t  v i r t u a l l y  a l l  a i r  i s  removed. 

Valve J i s  then opened and t h e  c ryos t a t  i s  ready f o r  f i l l i n g .  

This procedure i s  

3 .  Liquid Hydrogen Transfer  

Liquid hydrogen i s  t r ans fe r r ed  i n t o  t h e  c ryos t a t  by opening t h e  

valve i n  t h e  l i q u i d  l i n e  a t  the t o p  of t h e  dewar. The s l i g h t  pressure 

which e x i s t s  ins ide  t h e  dewar is  s u f f i c i e n t  t o  e f f e c t  t h e  t r a n s f e r  a t  

a r a t e  of s eve ra l  l/min. The l i qu id  l e v e l  i s  checked f requent ly  with 

t h e  level probe, and t h e  temperatures ind ica ted  by t h e  platinum re- 

s i s t a n c e  thermometer and t h e  thermocouples a r e  observed, The c ryos ta t  

i s  usua l ly  f i l l e d  t o  a depth of about 20 in .  (about 10 I ) .  

When t h e  des i red  l i q u i d  l eve l  i s  reached t h e  valve on t h e  dewar 

i s  closed and seve ra l  minutes a re  allowed f o r  t h e  hydrogen i n  t h e  t r a n s -  

fer l i n e  t o  evaporate and flow out .  The t r a n s f e r  l i n e  i s  then removed, 

f irst  from t h e  c ryos t a t  and then from t h e  dewar, and t h e  opening i n  

t h e  c ryos t a t  i s  closed with a threaded cap. The dewar ground w i r e  i s  

disconnected and t h e  dewar i s  immediately re turned  t o  i t s  s torage  a rea  

outs ide  t h e  bui lding.  The l i qu id  l e v e l  probe i s  removed and i t s  open- 

ing  i s  capped o f f .  
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B. RUN PROCEDURE 

1. Temperature S e t t i n g  and Control 

The method of operat ion of t h e  vapor p re s su re  c o n t r o l  system has 

been described i n  Sec t ion  1 1 1 - D .  

normal bo i l ing  temperature of hydrogen, a vacuum is pumped over t h e  

bath.  No p a r t i c u l a r  problems were encountered i n  s e t t i n g  t h e  tempera- 

t u r e  i n  t h i s  region. A s  t h e  pressure i n  t h e  c ryos t a t  i s  lowered, t h e  

l i q u i d  b o i l s  vigorously and t h e  temperature drops r ap id ly .  With approx- 

imately 8 R of l i q u i d  hydrogen i n  t h e  c ryos t a t ,  t h e  temperature can be 

lowered one degree i n  about 10 min, using a vacuum pump having a capac- 

i t y  of 20 R/min. 

To obta in  temperatures below t h e  

To obtain temperatures above 20.4" t h e  vent l i n e s  a r e  c losed and 

t h e  pressure  i s  allowed t o  r i s e .  It has been found t h a t  t h e  vapor pres -  

sure  r i s e s  by about 1 l b  each minute, but  t h a t  t h e  temperature ind ica ted  

by t h e  platinum r e s i s t a n c e  thermometer does not r i s e  a t  a corresponding 

r a t e  (according t o  t h e  hydrogen vapor pressure  curve) .  

e n t l y  due t o  the  f a c t  t h a t  t h e  bulk of t h e  heat  flow i n t o  t h e  ba th  i s  

down t h e  wal ls  of t h e  c r y o s t a t ;  t h i s  warms a layer  of l i q u i d  a t  t h e  top  

of t he  bath,  t ransmi t t ing  a correspondingly high vapor pressure  t o  t h e  

outs ide ,  while t h e  lower l aye r s  of l i q u i d  a r e  warmed much more slowly 

a s  a r e s u l t  of t h e  low r a t e  of heat  flow through t h e  l i q u i d .  When t h e  

system was f i r s t  placed i n t o  operat ion it was found t h a t  s e v e r a l  hours 

were required t o  r a i s e  t h e  temperature of t h e  ba th  by one degree. The 

s t i r r i n g  ac t ion  of t he  c ryos t a t  s t i r r e r  was not vigorous enougn t o  cause 

This i s  appar- 
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thorough mixing of t h e  l i qu id ,  and t h e  problem w a s  f u r t h e r  complicated 

because t h e  stirrer jammed and did not always func t ion  properly.  

The problem of obtaining a r ap id  temperature r ise was solved by 

i n s e r t i n g  a length of 1/8 i n .  O.D. s t a i n l e s s  s t e e l  tubing i n t o  t h e  open- 

ing  f o r  t h e  l i q u i d  l e v e l  probe, and pumping pure hydrogen gas i n t o  t h e  

ba th  through t h e  charging system. The tube extends t o  t h e  base of t h e  

c ryos t a t ,  so t h e  heat  i s  added a t  t he  lowest l e v e l .  The warmed l i q u i d  

a t  t h e  base rises, s e t t i n g  up a convection flow i n  t h e  bath and pro- 

v id ing  adequate mixing. 

provides enough heat  t o  r a i s e  the temperature rap id ly .  

The cooling and condensing of t h e  hydrogen gas 

Once t h e  des i red  temperature i s  reached it is  held steady by ad- 

j u s t i n g  t h e  vapor pressure cont ro l  system as described previously.  A l -  

though temperature d i f fe rences  of s eve ra l  t e n t h s  of a degree (measured 

by t h e  d i f f e r e n t i a l  thermocouples) e x i s t  throughout t h e  ba th  as  the 

temperature i s  being r a i sed  or lowered, it has been found t h a t  an es-  

s e n t i a l l y  uniform temperature is obtained wi th in  a few minutes a f t e r  

t h e  vapor pressure i s  held steady. This occurred even when the s t i r r i n g  

mechanism w a s  not operating. 

Through c a r e f u l  s e t t i n g  of t h e  cont ro ls ,  t h e  vapor pressure i s  held 

wi th in  narrow l i m i t s ,  and t h e  temperature remains s teady with l i t t l e  or 

no a t t e n t i o n  from t h e  operator .  

There i s  sometimes a s l igh t  tendency f o r  t h e  temperature t o  d r i f t ,  

al though t h e  d r i f t  usua l ly  amounts t o  no more than  a few thousandths 

of a degree i n  a period of 1 hr. This d r i f t  can be cor rec ted  by making 
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small changes i n  the  quant i ty  of gas i n  t h e  f i x e d  volume V (Fig.  14) 

through valves G and H. These valves  are connected toge ther  with about 

8 i n .  of 1/4 i n .  copper tubing, and by opening f i r s t  one valve and then  

t h e  other  it i s  poss ib le  t o  make small  changes i n  t h e  pressure  i n  V .  

This causes a corresponding change i n  t h e  ba th  vapor pressure and i n  

t h e  temperature of t h e  bath l i q u i d .  

d i f f e r e n t i a l  macometer f o r  es t imat ing  t h e  magnitude of t h e  pressure 

change i n  V, and with a l i t t l e  experience t h e  opera tor  can v i r t u a l l y  

e l imiyate  temperature d r i f t  

The mercury switch S serves  as a 

A t  temperatures around 20°K and above, t h e  temperatilre can be he ld  

s teady t o  w i t h  +.OO5", or b e t t e r ,  while a t  t n e  lowest temperature a t  

which a run was made temperatures were con t ro l l ed  t o  with 1-.02", o r  

b e t t e r  

2.  Preparat ion of Mixture and Pressure S e t t i n g  

After  the  temperature has been s e t ,  t h e  hydrogen-helium mixture i s  

charged i n t o  the  c i r c u l a t i o n  loop. Liquid hydrogen i s  f i r s t  condensed 

i n t o  t h e  equilibrium c e l l  and then pressur ized  with helium gas ,  

I n  prac t ice ,  t h e  mass of hydrogen necessary t o  f i l l  t h e  equi l ibr ium 

c e l l  approximately h a l f  f u l l  of l i q u i d  (about, 25 c c )  i s  ca l cu la t ed  f o r  

t h e  given temperature; from these  da t a  t h e  pressure  drop i n  t h e  1500 cc 

charging cyl inder  required t o  provide t h i s  amount of l i q u i d  i s  de te r -  

mined. Hydrogen is  then  admitted t o  t h e  loop slowly, u n t i l  t h e  dew 

point  i s  reached, a t  which time t h e r e  i s  a sharp  break i n  t h e  pressure  
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rise. The quant i ty  of hydrogen ca l cu la t ed  above i s  then charged i n t o  

t h e  loop. (The hydrogen gas from which t h e  l i q u i d  i s  condensed may be 

assumed t o  be normal hydrogen (758 orthohydrogen, 25% parahydrogen). 

Since t h e  experimental  da ta  a r e  taken wi th in  a f e w  hours, t h e  concentra- 

t i o n  of parahydrogen does not increase s i g n i f i c a n t l y ,  and t h e  da ta  ob- 

t a i n e d  w i l l  represent  mixtures of helium and normal hydrogen.) 

Helium i s  added t o  t h e  loop t o  r a i s e  t h e  pressure t o  t h e  des i red  

l e v e l .  A t  h igher  temperatures t h e  helium must be added slowly. When it 

first  e n t e r s  t h e  loop it forces  t h e  hydrogen i n t o  t h e  equilibrium c e l l ,  

where some of it condenses, and the pressure  rises only s l i g h t l y ;  how- 

ever  a f t e r  a minute or two of pumping by t h e  magnetic pump t h e  helium 

begins  t o  bubble through t h e  l i qu id  and t h e  accompanying evaporation of 

hydrogen causes t h e  pressure  t o  r ise.  Helium i s  admitted i n  small i nc re -  

ments u n t i l  t h e  des i red  pressure i s  reached. 

A s  t he  vapor i s  r ec i r cu la t ed  and t h e  two phases approacn equ i l ib -  

rium, t h e  pressure  changes s l i g h t l y .  The f l o a t i n g - p i s t o n  volume regu la to r  

i s  used t o  co r rec t  t h e  pressure without changing t h e  o v e r a l l  composition 

of t h e  mixture. This permits the tak ing  of da ta  a t  t h e  same pressures  

a long each isotherm, and f a c i l i t a t e s  t h e  c ros s  p l o t t i n g  on temperature- 

composition and pressure-temperature diagrams. 

A t  t h e  beginning of t h e  experimental work s e v e r a l  runs were made t o  

determine t h e  approximate time required f o r  t h e  mixture t o  reach equi- 

l ibr ium with continuous vapor r ec i r cu la t ion .  This  w a s  done by holding 

t h e  pressureeand temperature constant and t ak ing  samples of each phase 
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a t  d i f f e r e n t  time i n t e r v a l s .  The arialyses of t h e s e  samples ind ica ted  

t h a t  the  compositions remained e s s e n t i a l l y  cons tan t  a f t e r  about 10 or 

15 min of r e c i r c u l a t i o n ,  

t o  30 min t o  insure  t h a t  equilibrium was reached. I n  addi t ion ,  occa- 

s i o n a l  samples were taken a f t e r  an hour or more and a check was made t o  

see  i f  t h e  r e s u l t i n g  compositions f e l l  along a smooth c'urve through t h e  

other  po in t s  

Thereaf te r  samples were taken a f t e r  about 20 

3 .  Sampling 

During the  time allowed f o r  t h e  mixture t o  reach equilibrium, t h e  

sample b o t t l e s  a r e  evacuated. When s u f f i c i e n t  time has elapsed t h e  vapor 

r e c i r c u l a t i n g  pump i s  turned of f  and the  valves  D and E (F ig ,  16)  a t  t h e  

ends of t h e  vapor sample t r a p  a r e  c losed ,  The valve and stopcock t o  one 

of t h e  vapor sample b o t t l e s  a r e  ther, opened, and valve A i s  opened t o  

allow t h e  sample t o  flow i n .  The pressure  r i s e  ir, t h e  system i s  ob- 

served on t h e  compound gage G, and valve A i s  c losed  when t h e  b o t t l e  i s  

f i l l e d  t o  atmospheric pressure .  I f  t h e  valve i s  inadver tan t ly  l e f t  

open beyond t h i s  time, t h e  excess pressure  i s  re leased  through t h e  check 

valve C which opens a t  about 1 - 5  psig'. 

I n  t h e  l i qu id  sampling system valve J (Fig.  16) serves  a s  t h e  on- 

of f  c o n t r o l ,  I f  valves L and M a r e  c losed t h e  vapor i s  forced t o  flow 

through add i t iona l  lengths  of f i n e  c a p i l l a r y  tub ing  which t h r o t t l e  t h e  

flow and allow t h e  sample t o  be withdrawn slowly whec t h e  pressure  i n  

t h e  equilibrium c e l l  is  r e l a t i v e l y  high,  Valve K i s  a very f i n e  meter- 
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ing  valve used t o  fu r the r  cont ro l  t h e  r a t e  of flow. This f i n e  con t ro l  

i s  des i r ab le  as it allows the sample t o  be withdrawn without upse t t ing  

t h e  equilibrium ins ide  t h e  c e l l .  

Since t h e  length of c a p i l l a r y  tubing between t h e  equilibrium c e l l  

and t h e  valve J contains  a small amount of l i q u i d  and vapor t h a t  do not 

have t h e  equilibrium compositions, t h e  f irst  por t ion  of t h e  sample t o  

reach t h e  sample bank i s  discarded by keeping valves  R,  S, and T c losed 

and allowing it t o  flow out through check valve P which opens a t  about 

1.5 ps ig .  The small flow meter Q i s  used t o  determine t h e  r a t e  of flow 

of t h e  sample and t o  obta in  reproducible flow rates. A s  a genera l  r u l e  

t h e  vapor i s  allowed t o  flow for  about 1-5 or  20 sec,  before  admitt ing 

t h e  sample t o  t h e  b o t t l e s .  After t h e  b o t t l e s  are f i l l e d  t h e  valves  and 

stopcocks are closed and t h e  b o t t l e s  removed and s tored  f o r  l a t e r  ana l -  

y s i s  on t h e  mass spectrometer.  

During t h e  e a r l y  experimental work as many as four  or f i v e  samples 

were taken from t h e  same batch of l i qu id ,  with d i f f e r e n t  s e t t i n g s  on 

t h e  con t ro l  valves  K, L, and M, and with d i f f e r e n t  purging times. The 

analyses of t hese  samples showed t h a t  t h e  r a t e  of withdrawal and t h e  

purging t ime have l i t t l e  or no e f f e c t  on t h e  composition of t h e  sample. 

Samples containing as l i t t l e  as 14 helium were reproducible t o  within a 

few percent of t h a t  value.  Nevertheless, an attempt was made t o  t a k e  

samples a t  approximately t h e  same flow r a t e  throughout t h e  work, 

Since t h e  r ep roduc ib i l i t y  of dup l i ca t e  samples was cons i s t en t ly  

good during t h e  e a r l y  work, only one sample of each phase was taken 
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during l a t e r  runs. 

4. Instrument Readings 

The current  flow through t h e  r e s i s t a n c e  thermometer i s  maintained 

con t inua l ly  throughout t h e  run a t  each temperature so  t h e  temperature 

can be close,ly monitored, and any tendency f o r  it t o  d r i f t  can be de- 

t e c t e d .  The usual procedure cons i s t s  i n  s e t t i n g  t h e  r e s i s t a n c e  value 

on t h e  Mueller bridge,  corresponding t o  t h e  r e s i s t a n c e  of t he  platinum 

element f o r  the des i red  temperature,  and maintaining the  galvanometer 

de f l ec t ion  a t  zero by ad jus t ing  t h e  vapor pressure  con t ro l s  t o  co r rec t  

f o r  any d r i f t ,  The necessary c a l i b r a t i o n s  and adjustments a r e  made on 

t h e  br idge beforehand, and frequent  checks a r e  made during t h e  run t o  

de t ec t  any zero s h i f t  i n  t h e  galvanometer. 

The s e t t i n g  of t h e  Mueller br idge  and t h e  pressure  i n  t h e  c i r c u l a -  

t i o n  loop a r e  recorded a t  i n t e r v a l s  of 10 o r  15 min throughout each run. 

The EMF a t  each d i f f e r e n t i a l  thermocouple i s  recorded j u s t  before  t h e  

samples a r e  taken a t  each pressure .  

A zero EMF i s  usua l ly  observed fo r  each of t h e  thermocouples i m -  

mersed i n  t h e  l i q u i d .  This i nd ica t e s  a n e g l i g i b l e  temperature grad ien t  

i n  t h e  ba th  a f t e r  t h e  vapor pressure has been he ld  constant  for a shor t  

per iod of time. A s  t h e  l i q u i d  l e v e l  f a l l s  below each thermocouple 

(above t h e  equilibrium c e l l )  it ind ica t e s  a temperature above t h a t  of 

t h e  r e s i s t ance  thermometer. 

t h e  l i q u i d  l eve l  during t h e  run. 

This serves  t o  g ive  a rough es t imate  of 



When t h e  l i q u i d  l e v e l  f a l l s  below t h e  r e s i s t ance  thermometer ( in -  

d ica ted  by a lower temperature a t  thermocouple No. 3 )  t h e  apparatus i s  

shut  down u n t i l  more l i q u i d  hydrogen i s  added. 

The thermocouples performed s a t i s f a c t o r i l y  with t h e  exception of 

No.  2 which i s  inse r t ed  i n  a small hole  near t h e  base of t h e  equilibrium 

c e l l .  

became grounded t o  t h e  equipment and t h e r e a f t e r  gave very e r r a t i c  and 

incons is ten t  readings.  

equipment was ind ica ted  by t h e  f a c t  t h a t  i t s  EMF o s c i l l a t e d  back and 

f o r t h  when t h e  magnetic pump was on, with p rec i se ly  t h e  same frequency 

a t  which t h e  pump was operating. 

EMF leaking from t h e  c o i l s  of the pump. 

Very e a r l y  i n  t h e  experimental work t h i s  thermocouple apparent ly  

That it w a s  picking up a s t r a y  EMF from t h e  

This was probably caused by a small 

5 .  Reset t ing  the  Pressure and Temperature 

If t h e  next point  i s  t o  be taken a t  t h e  sametemperature, helium i s  

added t o  t h e  loop, or  vapor i s  withdrawn, t o  b r ing  t h e  pressure t o  t h e  

des i r ed  l eve l .  The c i r cu la t ing  pump i s  again turned ~n and t h e  run is  

made as before .  

A s  a general  r u l e  po in t s  a re  run a t  increas ing  pressures  a t  each 

temperature, s t a r t i n g  a t  a pressure j u s t  above t h e  hydrogen vapor pres-  

sure and proceeding t o  t h e  highest  pressure.  This procedure i s  par- 

t i c u l a r l y  important a t  t h e  higher temperatures, where t h e  vapor contains  

a l a r g e  percentage of hydrogen; under these  condi t ions,  i f  vapor is  

withdrawn from t h e  loop t o  lower t h e  pressure,  t h e r e  i s  a danger of 



84 

b o i l i n g  off  a l l  of t h e  l i q u i d .  

was not discovered u n t i l  t h e  samples were analyzed. 

This happened i n  s e v e r a l  e a r l y  runs and 

If the  next point  t o  be taken i s  a t  another temperature,  t h e  tem- 

pera ture  i s  r e se t  by ad jus t ing  t h e  ba th  vapor pressure  t o  t h e  necessary 

value.  

out of t h e  equilibrium c e l l ,  us ing t h e  vacuum pump i f  necessary.  Af te r  

t h e  temperature has been r e s e t ,  t h e  des i red  amount of l i q u i d  hydrogen 

i s  condensed i n t o  t h e  c e l l ,  helium i s  added, and t h e  run i s  made as be- 

f o r e  

The c i r c u l a t i o n  loop i s  opened and t h e  remaining l i q u i d  i s  bo i l ed  

C .  ANALYSIS OF GAS SAMPLES 

1. General 

Samples taken i n  t h e  present  work were analyzed i n  t h e  Instrumental  

Analysis Laboratory of t h e  Department of Chemical and Meta l lurg ica l  

Engineering of' The Universi ty  of Michigan. The instrument used i n  

these  analyses i s  a Consolidated model 21-103 mass spectrometer,  man- 

ufactured by the  Consolidated Engineering Corp., Pasadena, Ca l i fo rn ia .  

2. Operation of t h e  Mass Spectrometer 

The techniques of mass spectrometry a s  appl ied  t o  q u a n t i t a t i v e  

chemical ana lys i s  have been we l l  e s t ab l i shed .  The following i s  a simp- 

l i f i e d  descr ip t ion  of t h e  method of opera t ion  of t h e  instrument used i n  

t h i s  work e 

A small  quant i ty  of t h e  sample gas t o  be analyzed i s  expanded i n t o  

an evacuated reservoi r  t o  a pressure of 50 t O  100 microns. This pres-  



sure i s  measured 

f o r  later use i n  

t o  within a few hundredths of a micron and recorded 

t h e  f i n a l  ca lcu la t ions .  From t h i s  region, a port ion 

of t h e  sample flows through a small opening, c a l l e d  t h e  leak, i n t o  a 

reg ion  of high vacuum t o  10-7 m m )  where t he  molecules are bom- 

barded by e lec t rons  from a heated tungsten f i lament .  

sure on e i t h e r  s ide  of the  leak i s  qu i t e  low, it can be assumed tha t  

t h e  number of molecules of a given substance flowing through the leak  

i s  a func t ion  only of t h e  p a r t i a l  pressure of t h a t  substance i n  the  low 

pressure  r e se rvo i r ;  t h a t  is ,  the  flow of t he  molecules of one substance 

i s  unaffected by t h e  presence of o ther  types of molecules. 

Since the  pres-  

The e l ec t ron  bombardment removes e l ec t rons  from the atoms of some 

of the  molecules, producing pos i t i ve ly  charged ions having d e f i n i t e  

mass-to-charge r a t i o s .  These ions a r e  then  acce lera ted  through an  

e l e c t r i c a l  f i e l d  and in j ec t ed  i n t o  a magnetic f i e l d ,  where they a r e  de- 

f l e c t e d  i n t o  c i r c u l a r  paths whose r a d i i  a r e  a func t ion  of t h e  mass-to- 

charge r a t i o .  The separa t ion  of p a r t i c l e s  i s  e f f ec t ed  by co l l ec t ing ,  

a t  any i n s t a n t ,  only those  p a r t i c l e s  which follow a curve of f ixed  

rad ius  and the re fo re  have a spec i f i c  mass-to-charge r a t i o ,  I n  prac- 

t i c e ,  t h i s  i s  done by causing the  ions t o  flow through a semicircular  

metal  tube of f ixed  rad ius  which has a small s l i t  over t h e  t a r g e t ,  or 

co l l ec to r ,  s o  t ha t  a very narrow beam i s  co l l ec t ed ,  By changing t h e  

magnitude of t h e  acce lera t ing  voltage,  ions w i t h  d i f f e r e n t  mass-to- 

charge r a t i o s  are successively brought t o  focus on t h e  co l l ec to r ;  i n  

t h i s  way any desired range of mass-to-charge r a t i o s  can be scanned. 
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When a beam of ions s t r i k e s t h e  c o l l e c t o r ,  each ion  surrenders  i t s  

This cu r ren t  i s  amplified and charge, producing a small cur ren t  f low. 

recorded t o  ind ica t e  t h e  r e l a t i v e  abundance of t h e  p a r t i c l e s  of a given 

mass -to-charge r a t i o  reaching t h e  c o l l e c t o r .  I n  t h e  Consolidated model 

21-103 mass spectrometer, t h e  amplif ied cu r ren t  from t h e  c o l l e c t o r  a c t -  

ua t e s  a recording galvanometer which photographical ly  records each i m -  

pulse ,  producing a de f l ec t ion  propor t iona l  t o  t h e  number of ions i n  t h e  

beam. Since the  t o t a l  de f l ec t ion  w i l l  vary considerably,  t h e  recording 

galvanometer makes simultaneous recordings a t  f i v e  d i f f e r e n t  s e n s i t i v i t y  

l eve l s ,  producing f i v e  peaks, some of which may f a l l  beyond t h e  upper 

l i m i t  of t h e  graph. 

a given impulse, is then  measured and mul t ip l i ed  by t h e  appropr ia te  sens- 

i t i v i t y  f a c t o r  f o r  use i n  t h e  f i n a l  ca l cu la t ions .  

The h ighes t  peak which f a l l s  wi th in  t h e  graph, f o r  

3 Calculat ions 

The r e su l t i ng  peak height  i s  not used as an  absolu te  ind ica t ion  of 

t h e  quan t i ty  of a given substance i n  t h e  sample. Some substances a r e  

more e a s i l y  ionized than  o thers ,  so t h e  q u a n t i t i e s  of ions  of d i f f e r e n t  

substances reaching t h e  c o l l e c t o r  a r e  not propor t iona l  t o  t h e  q u a n t i t i e s  

of molecules of those  substances i n  t h e  gas sample. However, as pointed 

out  above t h e  r a t e  of flow of molecules of a given substance through 

t h e  l eak  i s  a func t ion  only of t h e  p a r t i a l  p ressure  of t h a t  substance 

i n  t h e  low pressure r e se rvo i r .  

he ights  produced by pure samples a s  s tandards of comparison. 

This  makes it poss ib l e  t o  use  t h e  peak 

These 



peak heights  are converted i n t o  component s e n s i t i v i t i e s  fo r  each sub- 

s tance,  usua l ly  expressed i n  divis ions ( u n i t s  of l i n e a r  d i s tance  on t h e  

graph)  of peak height  per micron, by dividing t h e  peak height  by t h e  

pressure  of t h e  pure sample i n  t h e  low pressure  r e se rvo i r .  The peak 

he ights  produced on t h e  graphs of t h e  samples being analyzed a r e  then  

divided by t h e  component s e n s i t i v i t i e s  t o  obta in  t h e  p a r t i a l  pressures  

of each substance i n  t h e  mixture. 

ob ta in  t h e  t o t a l  pressure,  and t h e  mole percent i s  computed as t h e  r a t i o  

of p a r t i a l  pressure t o  t o t a l  pressure.  

These p a r t i a l  pressures  a r e  added t o  

These ca l cu la t ions  may be b r i e f l y  summarized. Let us  assume t h a t  

a b inary  mixture of components A and B i s  t o  be analyzed. 

of A and B are run through t h e  instrument i n  t h e  normal manner and t h e  

component s e n s i t i v i t i e s  a r e  calculated a s  

Pure samples 

peak height  of pure sample 
pressure of pure sample 

Component s e n s i t i v i t y  = 

The sample mixture i s  then run, t h e  peak he ights  f o r  each substance a r e  

measured, and t h e  p a r t i a l  pressures a r e  ca l cu la t ed  from t h e  r e l a t i o n  

peak he ight  of component i n  mixture 
component s e n s i t i v i t y  

P a r t i a l  pressure = 

The p a r t i a l  pressures  a r e  added, and used t o  compute t h e  mole percent a s  

p a r t i a l  pressureA 
To ta l  pressure 

Mole percentA = 

I n  p rac t i ce  these  ca lcu la t ions  may become q u i t e  complicated, espe- 

c i a l l y  when t h e  molecules of a s i n g l e  substance a r e  s p l i t  up and ionized 
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i n  d i f f e r e n t  ways by t h e  e l ec t ron  bombardment, producing many d i f f e r e n t  

mass-to-charge r a t i o s  f o r  t h a t  substance.  The problem i s  f u r t h e r  com- 

p l i c a t e d  i f  some of t h e  peaks a r e  made up of con t r ibu t ions  from two or  

more substances whose ions have d i f f e r e n t  masses and charges,  bu t  t h e  

same mass-to-charge r a t i o .  

I n  t h e  present work no problems of t h i s  type  were encountered. The 

peaks produced by hydrogen and helium are unicomponent peaks; t h a t  is ,  

they  a r e  caused by only one component. 

4, Sample Calculat ions 

A randomly se l ec t ed  s e t  of mass spec t r a  from t h i s  work i s  shown 

i n  Fig.  24. It includes,  from l e f t  t o  r i g h t ,  a t y p i c a l  gas sample, a 

hydrogen standard,  and a helium standard.  The ca l cu la t ions  a r e  shown 

on t h e  graph. 

The number a t  t h e  t o p  of each column i s  from t h e  log of t h e  I n s t r u -  

mental Analysis Laboratory and is  t h e  i d e n t i f i c a t i o n  number used i n  t h e  

labora tory  referencing system. A l l  graphs a r e  on permanent f i l e  i n  t h e  

labora tory .  The re ference  numbers f o r  each sample analyzed i n  t h i s  work 

have been included i n  t h e  t a b u l a t i o n  of experimental  da t a  i n  Appendix 

A, so  t h a t  the  o r i g i n a l  spec t r a  may be consul ted.  

The information j u s t  below t h e s e  numbers i d e n t i f i e s  t h e  sample-in 

t h i s  case (from l e f t  t o  r i g h t )  sample No. 2 6 - ~ - 3 6 ,  a hydrogen s tandard,  

and a helium standard.  J u s t  below t h i s  l i n e  a r e  t h e  d i a l  readings from 

t h e  sample reservoi r  pressure  gage and t h e  corresponding pressure.  The 
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Fig. 24. Typical mass spec t ra .  
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d i a l  reading is converted t o  a pressure  reading ( i n  microns) by t h e  

r e l a t i o n  P = D2/K, where K = 1828. 

The dark l i n e s  across  t h e  bottom of t h e  graph a r e  t h e  recording 

galvanometer t r aces ;  t h e  s e n s i t i v i t y  f a c t o r  f o r  each t r a c e  i s  w r i t t e n  

a t  t h e  bottom of the  l e f t  column. In t e r rup t ions  can be seen i n  t h e s e  

t r a c e s  i n  t h e  form of peaks which have been labe led  a t  t h e  bottom. 

The h ighes t  peak t h a t  f a l l s  wi th in  t h e  graph i s  used f o r  t h e  ca l cu la -  

t i o n s .  

i n  c i r c l e s .  

determined by counting t h e  number of peaks below it;  t h e  lowest peak 

i s  always from t h e  lowest t r a c e ,  and each successive peak from t h e  next 

higher one. 

Hydrogen peaks used a r e  enclosed i n  t r i a n g l e s  and helium peaks 

The galvanometer t r a c e  assoc ia ted  w i t h  a given peak i s  

I n  t h e  helium standard ( r i g h t  column) t h e  peak has been measured 

a t  47.5 d iv is ions  above t h e  base l ine  of t h e  graph; however, it i s  

assoc ia ted  with t h e  second t r a c e  from t h e  bottom whicn i s  2.9 d iv i s ions  

above t h e  basel ine,  giving a ne t  peak height  of 44.6 d iv i s ions .  

number i s  mult ipl ied by t h e  galvanometer s e n s i t i v i t y  f a c t o r  (30 i n  t h i s  

ca se )  and divided by t h e  presslire (84.36 microns) t o  g ive  a helium sens- 

i t i v i t y  of 15.88 d iv i s ions  per  micron. The hydrogen s e n s i t i v i t y  i s  

ca l cu la t ed  i n  a s imi l a r  manner, 

This 

For t h e  sample, t h e  ne t  peak height  i s  mul t ip l ied  by t n e  galvanom- 

e t e r  s e n s i t i v i t y  f a c t o r  and divided by t h e  component s e n s i t i v i t y  f a c t o r  

t o  ge t  t h e  p a r i t a l  p ressure  f o r  each eomponent. The sum of t h e  c a l -  

cu la ted  pressures  may be checked aga ins t  t h e  t o t a l  p ressure  measured 



i n  t h e  instrument and recorded a t  t h e  top  of t h e  graph. 

t h e  discrepancy i s  l e s s  than  l$. 

e r r o r s  i n  peak height measurements. 

I n  t h i s  case 

This comparison w i l l  d e t ec t  any gross  

The small peaks labeled " res idua l  Het t  and " re s idua l  H2" i n  t h e  hy- 

drogen and helium standards a r e  a p a r t  of t h e  instrument background; 

they  a r e  caused by t h e  presence of small  q u a n t i t i e s  of gas which have not 

been removed from t h e  ion iz ing  chamber by t h e  ion-type vacuum pump used 

i n  t h i s  instrument. These peak heights  (modified by t h e  appropriate  

galvanometer s e n s i t i v i t y  f a c t o r )  may be assumed t o  be superimposed upon 

t h e  peak heights  i n  each mixture being analyzed. 

when one component i s  present i n  small concentrat ions,  i n  which case 

t h e  r e s i d u a l  peak height  i s  subtracted from t h e  component peak height  

before  t h e  ca l cu la t ions  a r e  made. 

They are s ign i f i can t  

D. OPERATIONAL DIF%ICULTIES 

I n  general  t h e  apparatus functioned s a t i s f a c t o r i l y ,  and no ser ious  

breakdowns occurred during t h i s  work. The p r i n c i p a l  problem encountered 

w a s  t h a t  of r a i s i n g  t h e  bath temperature above 20.4' rap id ly ,  without 

b o i l i n g  of f  t o o  much of t h e  l iqu id .  This was done by pumping pure hy- 

drogen gas i n t o  t h e  l i q u i d  as described above. 

The problems with t h e  bath s t i r r i n g  mechanism and with thermocouple 

No.  2 have been mentioned above. Neither of t hese  items was e s s e n t i a l  

t o  t h e  proper funct ioning of the apparatus.  

One pecul ia r  problem, not assoc ia ted  with a f a i l u r e  i n  t h e  equip- 

ment, was encountered during t h e  runs a t  t h e  two lowest temperatures 
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(17.07 and 15.5O"K). 

ps ia ,  t h e  densi ty  of t h e  vapor phase (which i s  mostly helium), becomes 

equal  t o  t h a t  of t he  l i q u i d  phase (mostly hydrogen). A t  h igher  pres -  

sures  t h e  vapor phase i s  more dense and t h e  mixture i s  apparent ly  i n -  

ver ted  i n  t h e  equilibrium c e l l ,  wi th  t h e  l i q u i d  f l o a t i n g  on t o p  of t h e  

vapor. 

and concluded t h a t  it occurred a t  p ressures  s l i g h t l y  above 500 ps ia  i n  

t h e  temperature range over which he w a s  working (17.4-21.8"). 

A t  t hese  temperatures,  a t  a pressure  below 500 

Smith32 observed t h i s  phenornencmin h i s  s t u d i e s  of t h e  system 

Before runs were made a t  t h e  lower temperatures i n  t h e  present  

work, ca lcu la t ions  were made t o  es t imate  t h e  pressure  a t  which t h i s  i n -  

vers ion  should occur, using da ta  on hydrogen and helium d e n s i t i e s  from 

Chelton and Mann. 59 These ca l cu la t ions  ind ica ted  t h a t  a t  temperatures 

around 15.0" t h i s  invers ion  would t a k e  p lace  a t  a pressure  of about 

350 ps ia ,  and a t  higher pressures  with increas ing  temperatures.  

When the  run was made a t  l7.O7", t h e  apparatus  functioned normally 

f o r  pressures  up t o  400 ps i a ;  however when an attempt was made t o  s e t  

t h e  pressure a t  500 ps ia  t h e r e  were two ind ica t ions  t h a t  t h e  invers ion  

pressure  had been exceeded. F i r s t ,  t h e  pressure  i n  t h e  c i r c u l a t i o n  

loop began t o  o s c i l l a t e ,  with a per iod of s e v e r a l  minutes, between 

about 480 ps ia  and 505 ps ia ;  t hese  o s c i l l a t i o n s  leve led  of f  t o  about 

6 l b  a f t e r  30 min. Secondly, t h e r e  was a sharp increase  i n  t h e  r a t e  

of bo i l -of f  of t h e  l i q u i d  hydrogen i n  t h e  c r y o s t a t ,  r equ i r ing  a read- 

justment i n  the  valve s e t t i n g s  i n  t h e  vapor pressure  c o n t r o l  system. 

Neither of these  phenomena nad been observed previously.  Assuming t h a t  
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t h e  inversion had taken place,  t h e  probable explanations a r e  as f o l -  

lows. 

l e t  l i n e  of t h e  equilibrium c e l l ,  and it vaporizes a s  it reaches a 

warmer por t ion  of t h e  equipment. This causes a gradual pressure r i s e ,  

which continues u n t i l  t h e  evaporated l i q u i d  has t raversed  t h e  c i r c u l a -  

t i o n  loop and re-entered t h e  equilibrium c e l l  where it condenses and 

(presumably) r e tu rns  t o  the  l i qu id  by f l o a t i n g  up through t h e  vapor 

a t  t h e  bottom. The increase i n  bo i l -of f  of t h e  ba th  l i q u i d  can be ex- 

plained a s  a r e s u l t  of t h e  addi t iona l  heat  suppl ied by t h e  condensa- 

t i o n  of t h e  c i r c u l a t i n g  mixture a s  it re-en ters  t h e  c ryos t a t .  

The pumping ac t ion  of the magnetic pump draws l i q u i d  up t h e  out- 

During t h e  15.30" run, data were taken i n  t h e  normal manner a t  300 

ps ia ,  but t h e  phenomena described above occurred when an attempt was 

made t o  set t h e  pressure a t  400 ps i a .  

A t  t h e  two poin ts  mentioned above, where t h e  phases were inverted,  

samples were taken i n  t h e  usual  manner, but t h e  compositions obtained 

from t h e i r  analyses were e n t i r e l y  incons is ten t  with t h e  o ther  r e s u l t s ,  

and t h e  da ta  were discarded. 

No f u r t h e r  attempts were made t o  take  da ta  a t  pressures  above 

t h e  invers ion  point ,  s ince  t h e  inaccess ib le  reg ion  covered only a small  

po r t ion  of t h e  t o t a l  a rea  of i n t e r e s t .  It appears t h a t  i n  subsequent 

s t u d i e s  of t h i s  system provisions w i l l  have t o  be made i n  t h e  apparatus 

t o  enable da ta  t o  be taken i n  the  region where t h e  invers ion  occurs.  

With an apparatus of t h e  type used i n  t h i s  work t h i s  could be done 

very simply with t h e  following th ree  modifications t o  t h e  present 
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design: 

rium c e l l  t o  withdraw samples from near t h e  t o p  of t h e  c e l l ,  (2 )  add 

a c o i l  of copper tubing i n  t h e  present  vapor o u t l e t  l i n e  of t h e  equ i l ib -  

rium c e l l  a t  a point  j u s t  above t h e  c e l l ,  and (3)  i n s t a l l  a valve as- 

sembly i n  t h e  c i r c u l a t i o n  loop t o  allow t h e  d i r e c t i o n  of flow of t h e  

vapor passing through t h e  equilibrium c e l l  t o  be reversed.  

(1) add an add i t iona l  c a p i l l a r y  sampling l i n e  i n  t h e  equ i l ib -  

A s impl i f ied  schematic diagram of a modified vapor r e c i r c u l a t i n g  

system i s  shown i n  F ig .  25.  For normal operat ion,  valves  A and B a r e  

open and C and D a r e  c losed;  f o r  reverse  flow A and B a r e  c losed and C 

and D opened. When t h e  phases a r e  inver ted  i n  t h e  c e l l ,  vapor would 

be withdrawn from t h e  bottom, c i r c u l a t e d  through t h e  ex te rna l  loop 

a s  before,  acd r e t u m e d  t o  t h e  top  of t h e  c e l l  t o  bubble down through 

t h e  l i q u i d .  The funct ions of t h e  o ther  modif icat ions a r e  apparent.  
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Fig. 25. Schematic diagram of modified vapor circulating system. 



V .  EXPERIMENTAL ERRORS 

A.  TEMPERATURE MEASUREMENT 

1. Resistance Thermometer 

The Leeds and Northrup type 8163 platinum r e s i s t a n c e  thermometer 

used i n  t h i s  work was c a l i b r a t e d  by t h e  Nat ional  Bureau of Standards 

t o  an accuracy of 0.0001 ohm; t h e  da t a  furn ished  from t h i s  c a l i b r a t i o n  

cons i s t s  of tabulated values  of r e s i s t a n c e  vs .  temperature f o r  t h e  

platinum element. In  t h e  range of i n t e r e s t  f o r  t h e  present  work t h e  

values  a r e  tabulated a t  i n t e r v a l s  of O . l ° K ,  and it i s  estimated t h a t  

l i n e a r  i n t e rpo la t ion  introduces e r r o r s  not i n  excess of 0.0004". 

r e s i s t a n c e  change of 0.0001 ohm i n  t h e  r e s i s t a n c e  element corresponds 

t o  temperature cnanges of about 0.005" a t  l?", and 0.002" a t  30°K. 

A 

The Leeds and Northrup type G-2 Mueller br idge  i s  capable of ac- 

cu ra t e ly  measuring r e s i s t ances  t o  wi th in  0.0001 ohm when used with a 

type 2284-d r e f l e c t i n g  glavanometer. 

corresponds t o  a galvanometer d e f l e c t i o n  of about 1 mm, s o  it i s  pos- 

s i b l e  t o  de tec t  temperature changes ranging from 0.002 t o  O.OO5", de- 

pending on the  temperature.  However, s ince  t h e  I n t e r n a t i o n a l  Tempera- 

t u r e  Sca le  i s  defined only t o  t h e  neares t  0.01", t h e  temperatures r e -  

ported here  a re  rounded off t o  t h a t  accuracy. 

A r e s i s t a n c e  change of 0.0001 ohm 

2. Thermocouples 

The construct ion of t h e  thermocouples has been descr ibed previously.  
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Since they  a r e  used a s  d i f f e r e n t i a l  thermocouples, producing small EMF'S, 

they have not been ca l ibra ted .  The temperature-DIl? da ta  used t o  con- 

v e r t  t h e  thermocouple readings t o  temperature i s  taken from Bunch and 

Powell. 62 

The Leeds and Northrup type K - 3  potentiometer used i n  conjunction 

with t h e s e  thermocouples has a s e n s i t i v i t y  of k(0.5 pv + 0.015$ of t h e  

reading) .  

curacy of a l l  EMF'S reported can be assumed t o  be 0.5 t o  0.6 pv. 

Since t h e  l a rges t  EMF"s recorded were around 800 pv, t h e  ac- 

The gold-cobalt vs.  copper thermocouples have a s e n s i t i v i t y  varying 

from about 12.5 pv/degree a t  15" t o  21.3 pv/degree a t  30".  

temperatures measured by these thermocouples a r e  accurate  t o  within 

about +0.04" a t  the  lowest temperature and +0.02" a t  t h e  highest  t e m -  

Thus t h e  

pera ture .  

3 .  Val id i ty  of Recorded Temperatures 

The temperature icd ica ted  by t h e  platinum r e s i s t a n c e  thermometer 

i s  assumed t o  be t h a t  of t he  mixture ins ide  t h e  equilibrium c e l l .  Tkis 

seems j u s t i f i e d  for t h e  following reasons: 

i s  i n s e r t e d  i n  a hole  d r i l l e d  in  t h e  wal l  of t h e  equilibrium c e l l  and 

i s  t h e r e f o r e  i n  int imate  contact with t h e  c e l l  i t s e l f ;  (2 )  t h e  thermal 

conduct ivi ty  of copper a t  l iqu id  hydrogen temperatures i s  severa l  times 

i t s  room temperature value, while i t s  spec i f i c  heat  i s  about 1/10 of i t s  

room temperature value; and (3) t h e  d i f f e p e n t i a l  thermocouples j u s t  

above and below t h e  equilibrium c e l l  c o n s i s t e n t l y  indicated EMF'S of 

(1) t h e  platinum element 
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zero when both t h e  c e l l  and t h e  thermocouples were immersed i n  t h e  l i q -  

uid.  The temperature of t h e  equi l ibr ium c e l l  may the re fo re  be assumed 

t o  be e s s e n t i a l l y  f r e e  of grad ien ts .  

Thermocouple No. 3 i s  located on t h e  vapor i n l e t  l i n e  of t h e  equi-  

l ibrium c e l l  a t  a poin t  about 1/2 i n .  from t h e  bottom of t h e  c r y o s t a t .  

Its reading would ind ica t e  any temperature d i f f e rence  between t h e  vapor 

en te r ing  t h e  c e l l  and t h e  c e l l  i t s e l f .  

thermocouple exceeded 20.5 ~v ( t h e  l i m i t i n g  s e n s i t i v i t y  of t he  galvanom- 

e t e r )  t h e  experimental work was stopped; t h i s  occurred only when t h e  

l i q u i d  l e v e l  began t o  drop below t h e  t o p  of t h e  equilibrium c e l l ,  i n  

which case the  temperature a t  No. 3 would f a l l  below t h a t  of t h e  r e -  

s i s t a n c e  thermometer s Throughout t h e  experimental  work t h e  r e c i r c u l a t  - 

ing  vapor en ter ing  t h e  equilibrium c e l l  was a t  a temperature which d i f -  

f e r ed  from t h a t  of t he  mixture i n  t h e  c e l l  by no more than  k0.03"K. 

Whenever t h e  reading a t  t h i s  

Thermocouples No. 1 and No. 4 a r e  loca ted  on t h e  vapor o u t l e t  

l i n e s  of t h e  equilibrium c e l l  (see Fig.  20).  They were placed a t  t h e s e  

poin ts  t o  determine i f ,  a t  any time, t h e  temperature of t h e  outgoing 

vapor f e l l  below t h a t  of t h e  equilibrium c e l l ;  i f  t h i s  occurred it 

would mean t h a t  t h e  vapor might p a r t i a l l y  condense a s  it flows out ,  

g iv ing  it a l imi t ing  composition equal  t o  t h a t  of t h e  lower temperature.  

The only case i n  which a measurably lower temperature was recorded a t  

e i t h e r  thermocouple was during t h e  run of s e v e r a l  po in ts  a t  15.5". The 

maximum reading at thermocouple No. 1 i n  t h i s  case  was -2.3 pv, i n d i -  

c a t i n g  a temperature d i f f e rence  of about 0.2". A check of t h e  temper- 
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ature-composition p lo t  of t h e  experimental data  shows t h a t  t h i s  could 

cause a l imi t ing  e r r o r  i n  t h e  vapor composition of about 0.03 mole per- 

cent,  while t h e  e f f ec t  of t he  l iqu id  composition would be negl ig ib le .  

Thermocouple No. 5 i s  located on t h e  vapor i n l e t  l i n e  j u s t  below 

t h e  counterflow heat exchanger (Fig. 20). 

t o  determine t h e  effect iveness  of t h e  heat exchanger i n  lowering t h e  

temperature of t h e  incoming vapor, and i t s  readings a r e  not c r i t i c a l  

i n  t h e  evaluat ion of t h e  experimental r e s u l t s .  

It w a s  placed t h e r e  pr imari ly  

Thermocouple No. 2 i s  located i n  a small  hole  near t h e  base of t h e  

equilibrium c e l l  on t h e  opposite s i d e  of t h e  c e l l  from t h e  platinum r e -  

s i s t ance  element. 

became grounded t o  t h e  c e l l  and t h e r e a f t e r  gave e r r a t i c  and inconsis tent  

readings.  However, because of t h e  evidence c i t e d  above t o  i n d i c a t e  

t h a t  t h e  equilibrium c e l l  was a t  a uniform temperature, t h e  proper func- 

t i o n i n g  of t h i s  thermocouple i s  not considered e s s e n t i a l  for accurate  

temperature measurement. 

Very ea r ly  i n  t h e  experimental work it apparently 

B. TEMPERATURE CONTROL 

It has been pointed out above t h a t  t h e  platinum r e s i s t a n c e  t h e r -  

momenter and associated equipment used i n  t h i s  work a r e  capable of de- 

t e c t i n g  temperature changes of a s  l i t t l e  as O.OO5",  or l e s s ,  over t h e  

range of i n t e r e s t .  I n  general ,  t h e  temperature w a s  cont ro l led  t o  within 

these  limits except during t h e  runs a t  15.50" and 17.07", during which 

t h e  temperature var ied  by about f0.02". The reason f o r  t h e  poorer con- 
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t r o l  during these runs i s  t h a t  t he  mercury switch i n  t h e  vapor pressure  

con t ro l  system was inoperatfve,  and t h e  ba th  pressure  was con t ro l l ed  

manually by observing t h e  pressure on t h e  0-30 ic. mercury manometer. 

The s lopes of t he  i soba r i c  da t a  p l o t s  on t h e  temperature-composition 

diagram shows t h a t  t h e  change i n  composition wi th  temperature i n  t h i s  

region i s  qui te  small  f o r  both phases, s o  t h a t  a temperature e r r o r  of 

0.02" would cause an e r r o r  i n  composition of 0.05 mole percent or  l e s s .  

The con t ro l  of t h e  vapor pressure of t h e  ba th  o f f e r s  another means 

of es t imat ing  the  maximum temperature f l u c t u a t i o n s  i n  t h e  ba th .  

eral  t h e  vapor pressure of t h e  bath i s  s l i g h t l y  higher  than  t h a t  cor -  

responding t o  the  temperature ind ica ted  by t h e  platinum r e s i s t a n c e  t h e r -  

mometer. This i s  apparec t ly  due t o  a s l i g h t  temperatare grad ien t  a t  t h e  

t o p  of t h e  l i qu id  caused by t h e  flow of hea t  down t h e  walls of t h e  cryo- 

s t a t  and t h e  heat introduced by t h e  r e c i r c u l a t i n g  vapor. Nevertheless,  

t h e  bulk of the  l i q k i d  i s  e s se r i t i a l ly  f r e e  of temperature grad ien ts ,  

and once t h e  pressure i s  s e t ,  t h e  temperature remains cons tan t .  

I n  gen- 

The magnitude of t h e  pressure f l u c t u a t i o n s  i n  t h e  c r y o s t a t  can be 

determined from t h e  motion of t h e  mercury i n  t h e  U-tube mercury switch 

(Fig. 14), which func t ions  as a d i f f e r e n t i a l  manometer. With c a r e f u l  

s e t t i n g  of the  cont ro ls ,  t h e  l i n e a r  motion of t h e  mercury i n  t h e  U- 

tube i s  observed t o  be l e s s  than  about 1 mm,'and t h e  accompanying * 

pressure f luc tua t ions  a r e  s l i g h t l y  l e s s  s ince  t h e  U-tube i s  t i l t e d  t o  

produce a g rea t e r  l i n e a r  t r a v e l  f o r  a given pressure  change. A check 

of vapor pressure da ta  f o r  hydrogen4? i n d i c a t e s  t h a t  t h i s  provides 
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temperature con t ro l  cons is ten t  with t h a t  ind ica ted  by t h e  r e s i s t ance  

thermometer. 

C.  PRESSURE MEASUREMENT 

The only pressure which must be accura te ly  measured i s  t h a t  of t h e  

equilibrium mixture i n  t h e  c i r cu la t ion  loop. 

0-500 ps ig  ca l ib ra t ed  16 in .  Heise gage, having an  accuracy of 0.1% of 

f u l l  s c a l e  reading over t he  e n t i r e  s ca l e .  The equilibrium pressures  

repor ted  here  a r e  accura te  t o  within 20.5 p s i .  

This i s  measured with a 

D. A T T A D D E N "  OF EQUILIBRIUM 

Equilibrium i s  assumed t o  be  reached when t h e  compositions of t h e  

two phases no longer change with t i m e .  During t h e  e a r l y  work t h e  t i m e  

r equi red  w a s  determined t o  be on t h e  order of 10 t o  15 min, and the re -  

after 20 t o  30 min was allowed f o r  each mixture t o  reach equilibrium. 

E. GAS PURITY 

The hydrogen gas used i n  making up t h e  equilibrium mixtures is  

Matheson u l t ra -pure  grade hydrogen having t o t a l  impur i t ies  of less 

than  10 ppm. 

The helium used i n  t h e  m i x t u r e  i s  s p e c i a l  analyzed helium, donated 

by t h e  U. S. Bureau of Mines Helium Research Center, Amarillo, Texas. 

It has  t o t a l  impur i t ies  l e s s  than I 2  ppm. 

F. SAMPLING 

Errors  introduced i n  sampling, e spec ia l ly  those  assoc ia ted  with 
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t he  f r ac t iona t ion  of t h e  l i qu id ,  a r e  prominently mentioned i n  many papers 

on low temperature vapor l i q u i d  e q u i l i b r i a .  Frac t iona t ion ,  i f  it oc- 

curs,  would be expected t o  cause considerable  s c a t t e r  i n  t h e  da ta  and t o  

make r ep roduc ib i l i t y  d i f f i c u l t .  

tem used i n  the  present  work gave cons i s t en t ly  reproducible  r e s u l t s  which 

show r e l a t i v e l y  l i t t l e  s c a t t e r .  

Smith32 (see Chapter V I )  who used a d i f f e r e n t  method of sampling. 

The c a p i l l a r y  continuous sampling sys-  

The da ta  agree q u i t e  we l l  wi th  t h a t  of 

G .  MASS SPECTROMETER ANALYSIS OF GAS SAMPLES 

I n  t h e  rout ine  ana lys i s  of gas samples on t h e  mass spectrometer,  

60 t h e  following t h r e e  sources of e r r o r  a r e  considered. 

1. Change i n  instrument c a l i b r a t i o n ,  

2. Impuri t ies  i n  t h e  c a l i b r a t i n g  gases,  and 

3. Presence i n  t h e  mixture of mater ia l s  not included i n  t h e  

ana lys i s .  

The l a t t e r  problem has no e f f e c t  on t h e  a n a l y s i s  when unicomponent 

peaks a r e  used i n  t h e  ca l cu la t ions .  

t h e  presence of a t r a c e  of a i r  i n  t h e  sample w i l l  not a f f e c t  t h e  ac-  

curacy of t h e  ana lys i s ,  s ince  t h e  peak he igh t s  w i l l  s t i l l  g ive  t h e  cor -  

r e c t  hydrogen t o  helium r a t i o .  

an impurity added t o  the  mixture a f t e r  it was with drawn from t h e  sys-  

tem, so  it would not be considered a p a r t  of t h e  sample i n  any case.  

I n  t h e  present  work, f o r  example, 

I n  t h i s  case t h e  a i r  would represent  

The c a l i b r a t i n g  gases used i n  t h e  analyses  a r e  known t o  be of high 

p u r i t y .  No appreciable e r r o r  i s  considered t o  have been introduced 

because of impuri t ies  i n  these  gases .  
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It i s  know t h a t  t h e  s e n s i t i v i t y  of t h e  instrument t o  hydrogen 

may change with time. To reduce t h i s  source of e r r o r  t o  a minimum, hy- 

drogen standards were run frequently,  u sua l ly  a t  t h e  beginning and end 

of each day 's  run on t h e  mass spectrometer. The hydrogen s e n s i t i v i t i e s  

a t  t h e  beginning and end of each day were then  calculated,  and a l i n e a r  

change with time was assumed t o  have occurred throughout t h e  day between 

t h e s e  values.  

changes i n  instrument ca l ibra t ion .  

This i s  a standard procedure i n  minimizing e r r o r s  due t o  

The t o t a l  of a l l  e r r o r s  i n  t h e  mass spectrometer ana lys i s  of t h e  

sample may be expressed as an e r ror  i n  t h e  mole percent ca lcu la ted  for 

a given component. The manufacturer of t h e  Consolidated modd21-103 

mass spectrometer quotes61 t h e  following maximum e r r o r s  from a l l  causes : 

Maximum Deviation Maximum 4 
(Mole 4 )  (Mole 4 )  Deviation 

4 Component 

100.0 
10.0 
1.0 
0.10 

fl.0 
+o. 10 

kO.01 
+o. 05 

f 1.0 
f 1.0 
+ 5.0 
+lo. 0 

During a period of severa l  months j u s t  p r i o r  t o  t h e  time t h e  sam- 

p l e s  taken i n  t h i s  work were analyzed, t h e  mass spectrometer underwent 

a very thorough inspec t ion  and ca l ib ra t ion .  

of known composition were run and e r r o r s  i n  t h e  analyses  were consis-  

t e n t l y  wi th in  t h e  limits l i s t e d  above. 

Carefu l ly  prepared samples 

These l i m i t s  of accuracy a r e  

assumed t o  apply t o  t h e  analyses of samples taken  i n  t h i s  work. 



V I .  EXPERIMENTAL RESULTS 

A .  GENERAL 

The experimental r e s u l t s  repor ted  here  c o n s i s t  of vapor and l i q u i d  

phase compositions a t  eleven d i f f e r e n t  temperatures,  covering t h e  range 

15.50 t o  32.50°K, and a t  p ressures  from hydrogen s a t u r a t i o n  pressure  t o  

500 ps i a .  

drogen, 25% parahydrogen) and helium. 

The da ta  a r e  f o r  mixtures or  normal hydrogen (75% orthohy- 

B. PRESENTATION OF DATA 

The r e s u l t s  of t he  experiment a r e  summarized i n  Table I and Figs .  

26-31. 

i n t e r v a l s  of 25 p s i  up t o  200 ps ia ,  and a t  t h e  higher  pressures  250, 300, 

400, and 500 p s i a .  

tempt t o  locate  t h e  c r i t i c a l  point  f o r  t h a t  isotherm. 

I n  general ,  po in ts  were taken along each isotherm a t  pressure  

The t h r e e  poin ts  run a t  31.60" were taken i n  an a t -  

Figure 26 is an isothermal  pressure-composition diagram, represent  - 

ing  t h e  pro jec t ion  on t h e  P-x coordinate  plane of curves cu t  i n  t h e  

P-T-x surface by planes of constant  temperature.  A por t ion  of t h i s  d i a -  

gram, on which most of t h e  l i q u i d  l i n e s  c ros s  each o ther ,  i s  shown on 

an expanded sca le  i n  Fig.  27. 

Figure 28 i s  a p l o t  of t h e  da ta  on a temperature-composition d i a -  

gram. These curves a r e  pro jec t ions  on t h e  T-x coordinate  plane of 

curves cu t  i n  t h e  P-T-x surface by planes of constant  pressure.  Be- 

cause t h e  data  were taken a t  t h e  same pressures  a t  each temperature, 
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TABLE I 

SUMMARY OF EXPERIMENTAL DATA 

Temperature Pres sure  Liquid Vapor 
( O K )  (ps ia )  Mole ’$ H e  Mole ’$ H2 Mole $ He Mole $ H2 

49.5 
75.0 
100.0 
125.0 

15.50 150.0 
175.0 
200.0 

300.0 
250.0 

17.07 

20.40 

23.00 

56.5 
75.0 
100.0 
125.0 
150.5 
175.0 
200.0 
250.0 
300.0 
400.0 

35.0 
50.0 
75.0 
100.0 
125.0 
150.0 
175 - 0 
200.0 
250. o 
300.0 

500.0 
400.0 

--- 
0.29 
0.46 
0.51 
0.55 
0.64 
0.71 
0.82 
0.87 

0.36 
0.43 
0.57 
0.72 
0.80 
0.89 
1.00 
1.14 
1.31 
1.51 

0.34 
0.41 

0.84 
1-03 

1.54 

0.61 

1.30 

1.67 
2.05 
2.36 
2.96 
3.39 

--- 
99-71 
99.54 
99.49 
99.45 
99.36 
99.29 
99.18 
99.13 

99.64 
99.57 
99.43 
99.28 
99 - 20 
99-11 
99 * 00 
98.86 
98.69 
98.49 

99.66 
99.59 
99.39 
99.16 
98.95 

98.46 
98.33 
97.95 
97.64 
97.04 
96.61 

98.70 

93.78 
95.51 
96.31 
96.77 
97.02 
97.14 
97.29 
97.41 
97.48 

89.67 
91.86 
93.30 
94. 12 
94 a 64 
95-03 
95.15 
95.56 
95.82 
95.90 

53 60 
65 0 45 
75 - 40 
80 - 30 
83.20 
84.80 
86.03 
87-13 
88.41 
88.97 
90 08 
90.35 

6.22 
4.49 
3.69 
3.23 
2.98 
2.86 
2.71 
2.59 
2.52 

10.33 
8.14 
6.70 
5.88 
5.36 
4.97 
4.85 
4.44 
4.18 
4.10 

46.40 
34.55 
24.60 
19 * 70 
16.80 
15.20 
13.97 
12.87 
11-59 
11.03 
9.92 
9.65 

50.0 0.38 99.62 37.00 63.00 
75.0 0.75 99.25 53 - 44 46.36 
100.0 1.15 98.85 62.90 37.10 
125.0 1.36 98.64 67.87 32 13 
150.0 1.72 98.28 71- 75 28.25 
175.0 2.15 97.85 74.35 25.65 
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TABLE I (Continued) 

Temperature Pres sur e Liquid Vapor 
("0 ( p s i a )  Mole $ He Mole $ H2 Mole 6 He Mole $ H2 

23.00 

26.00 

29.00 

30.60 

31.00 

200.0 
250.0 
300.0 
400.0 
500.0 

81.0 
100.0 
125.0 

200.0 

300.0 
400.0 

150- 0 

250.0 

500.0 

127.0 
151. o 
175.0 
200.0 
250.0 
300.0 
400,O 
500.0 

300.0 
400.0 
450.0 

176.5 
199.0 
250.0 
300.0 
325.0 
350.0 

400.0 
413.0 

375 0 0 

2.39 
2.91 
3.55 
4.58 
5.46 

0.67 
0.97 
1-43 
1.92 
2.86 
3.64 
4.76 
6.64 
8.48 

0.91 
1.50 

4.59 
6.21 
9.63 

2.20 
3.07 

13.35 

7.29 
13 24 
17.95 

1.49 
2.51 
4.78 
7.49 
8.73 
11.03 
12.93 
15.64 
20.87 

97.61 
97.09 
96.45 
95.42 
94.54 

99.33 
99-03 
98.57 
98.08 
97 - 14 
96.36 
95 * 24 
93.36 
91.. 52 

99.09 
98-50 
97 - 80 
96.93 
95.41 
93.79 
90.37 
86 65 

86.26- 
82.05 

98.51 
97.49 
95 0 22 
92.51 
91.27 
88.97 
87-07 
84.36 
79.13 

92-71 

76.30 
78.78 
80.55 
82 34 
83 - 30 
22.60 
33 50 
43.37 
49.77 

62 67 
65.65 
68.58 
70 e 02 

56 90 

14.03 
21.92 
27.75 
32.93 
39.54 
43.70 
47.95 
49 a 20 

30.32 

30.36 
32.60 

11.28 
15- 59 
22.58 
26.57 
27.55 
27.85 
27.59 
25.78 
21.85 

23.70 
21.22 
19.45 
17.66 
16.70 

77.40 
66.50 
56.65 
50.23 
43.10 
37 - 33 
34.35 
31.42 
29.98 

85 - 97 
78.08 
72.25 
67-07 
60 * 46 
56 30 
52-05 
50.80 

69.68 

69.64 

88.72 
84.41 
77.42 
73.43 
72.45 
72.15 
72 a 41 
74.22 
78.15 

67 40 

U 
1 
I 
1 
I 
I 
I 
I 
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TABLE I (Concluded) 

Temper a t  ure Pres  sur e Liquid 
(OK) (ps ia )  Mole $ H e  Mole ’$ H 2  

31.50 

32.50 

177 * 0 
200.0 
225.0 
250.0 
275.0 
300.0 
325.0 
351.0 

174.5 
200.0 
220.0 
238.5 
250.5 
261.5 
275.5 
289.5 
300.0 
308.5 

1.27 

3.61 

6.26 
8.18 

16.59 

2.30 

4.83 

10.47 

0.81 
2r07 
3-17 
4.29 
4.99 

6.87 
8.71 

10.10 
12.02 

--- 

98.73 

96.39 
95.17 
93.74 
91.82 
89.53 

97-70 

83.41 

99.19 
97.93 
96.83 
95.71 
95.01 

93.13 
91  29 
89.90 
87.98 

--- 

- A  -~ 

Mole ’$ He Mole $ H2 

7.67 92.33 
11.94 88.06 
15.64 84.36 
18- 35 81.65 
20.30 79.70 
21.37 78.63 
21.49 78.51 
17.58 82.42 

4.00 
8.31 

11.75 
13 86 
14.82 
15.62 
16.19 

15.88 
16.35 

96.00 
91.69 
88.25 
86.14 
85.18 
84.38 
83.81 
83.65 
84.12 

188.5 0.98 99.02 3.12 96.88 

220.0 3.10 96.90 7.45 92.55 
242.0 5.09 94.91 
250.0 5.99 94.01 --- -- - 
258.0 6.75 93.25 

200.0 1.68 98.32 4.80 95.20 

--- -- - 

--- --- 
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Fig. 27. Isothermal pressure-composition diagram showing 
liquid region on expanded scale. 
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very l i t t l e  i n t e rpo la t ion  of the  P-x isotherms was requi red  t o  p l o t  t h e  

curves i n  Fig. 28. 

composition diagram on an expanded sca l e .  

Figure 29 shows t h e  l i q u i d  region of t h e  temperature- 

Figure 30 shows a c ross -p lo t  of t h e  da t a  from Figs .  26 and 28 on 

a pressure-temperature diagram. 

sur face  by planes of constant  composition. 

These curves a r e  l i n e s  cu t  i n  t h e  P-T-x 

Figure 31 i s  a p lo t  of equilibrium cons tan ts  K vs .  p ressure .  The 

constant  K i s  defined a s  t h e  r a t i o  of t h e  mole f r a c t i o n  of a component 

i n  t h e  vapor t o  i t s  mole f r a c t i o n  i n  t h e  l i q u i d .  

C. DISCUSSION 

The behavior of t h i s  system, a s  shown by t h e  curves i n  F igs .  26-30, 

i s  similar t o  t h a t  of o ther  systems involving components whose c r i t i c a l  

po in t s  a r e  f a r  a p a r t .  S imi la r  behavior i s  exhib i ted ,  f o r  example, by 

t h e  systems nitrogen-helium, 24363  and nitrogen-hydrogen. 16 

I n  t h e  P-x diagram of Fig.  26 and the  T-x diagram of Fig.  28, each 

curve i s  divided i n t o  two branches, represent ing  t h e  equilibrium l i q u i d  

and vapor compositions. A t  f i xed  pressure  and temperature ( represented 

by a hor izonta l  l i n e  i n  e i t h e r  diagram) t h e  two co-exis t ing phases l i e  

a t  t h e  ends of a ho r i zon ta l  l i n e  between t h e  two curves.  The region 

between t h e  curves represents  mixtures cons i s t ing  of two phases, while 

po in ts  outs ide a r e  i n  a s i n g l e  phase region.  The two branches of each 

equilibrium curve on these  diagrams merge a t  a poin t  a t  which t h e  two 

phases become indis t inguishable .  These poin ts  a r e  c a l l e d  c r i t i c a l  
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po in t s  and t h e i r  locus on t h e  P-T-x sur face  i s  c a l l e d  t h e  c r i t i c a l  curve. 

It p ro jec t s  as a smooth curve on each of t h e  t h r e e  coordinate planes of 

t h e  P-T-x diagram. 

pressure-temperature p lo t  as  a n  envelope (sometimes c a l l e d  t h e  c r i t i c a l  

envelope) which i s  tangent t o  each of t h e  curves of constant  composi- 

t i o n ;  t hus  c r i t i c a l  po in ts  w i l l  always appear as maxima or minima on t h e  

curves i n  t h e  P-x and T-x diagrams. 

j e c t  may be found i n  t h e  book by Ruhemann. 

Each of t h e  closed loops i n  Fig.  26 includes a region of r e t r o -  

grade condensation. This i s  tha t  por t ion  of t h e  curve which l ies  t o  

t h e  r i g h t  of a v e r t i c a l  l i n e  through t h e  c r i t i c a l  point  of t h e  loop. 

For example, i f  a low pressure gas mixture containing Pj$ helium i s  com- 

pressed isothermally a t  31.0°, condensation w i l l  occur first a t  a pres-  

su re  of about 275 ps ia .  Condensation w i l l  continue upon f u r t h e r  com- 

press ion  up t o  about 380 p s i a ;  however a t  higher pressures  t h e  l i q u i d  

w i l l  begin t o  evaporate and w i l l  disappear completely around 405 psia ,  

leaving a s i n g l e  vapor phase as i n  t h e  beginning. 

I n  general ,  t h e  c r i t i c a l  curve w i l l  appear on t h e  

A f u r t h e r  discussion of t h i s  sub- 

16 

I n  Fig.  27 t h e  s c a t t e r  i n  t h e  l i q u i d  region of l o w  helium content 

i s  g r e a t l y  magnified. 

smooth curve does not exceed 0.1 mole percent,  which f o r  most po in t s  

does not exceed t h e  l i m i t s  of accuracy of t h e  mass spectrometer i n  

t h i s  region. 

In  general, t h e  devia t ion  of po in ts  from a 

I n  F igs .  28 and 29, t h e  data exh ib i t  reverse-order s o l u b i l i t y  i n  

t h e  l i q u i d  region. This i s  defined as an  increase  ir, t h e  s o l u b i l i t y  
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of a cons t i tuent  with increas ing  temperature,  a t  constant  pressure,  and 

i s  character ized by a pos i t i ve  s lope  of t h e  l i q u i d  l i n e s  on t h e  T-x 

diagram. 

The a r e a  on t h e  P-x diagram of Fig.  26 i n  which t h e  l i q u i d  l i n e s  

c ros s  represents  a region i n  which a minimum occurs i n  t h e  bubble point  

curves i n  t h e  P-T diagram. Tnus a minimum would be expedted i n  t h e  

bubble poin t  curves f o r  mixtures with up t o  4% helium, (The minimum i n  

t h e  l$ l i n e  i n  F ig .  30 i s  out  of t h e  range of t h e  diagram t o  t h e  l e f t y  ) 
i 

The c r i t i c a l  curve snown i n  Figs .  26, 28, and 30 has been estimated 

from a s tudy of t h e  t r end  of t h e  da ta  on t h e  P-x, T-x, and P-T p l o t s .  

Because of t h e  f l a t n e s s  of t h e  P-T-x sur face  i n  t h e  v i c i n i t y  of t h e  

c r i t i c a l  curve, it i s  d i f f i c u l t  t o  l oca t e  c r i t i c a l  po in t s  accura te ly .  

No v i s u a l  observation of phenomena i n  t h e  c r i t i c a l  reg ion  was poss ib l e  

i n  t h i s  experiment, due t o  t h e  na ture  of t h e  apparatus .  

The b e s t  es t imate  of t h e  loca t ion  of t h e  c r i t i c a l  curve i s  ob- 

t a ined  from the  P-x p lo t  of Fig.  26. For t h e  3l.00" and 31.50" i s o -  

therms, experimental po in ts  were obtained which permitted t h e  loops t o  

be completely closed without ex t rapola t ion ,  and t h i s  served t o  def ine  

t h e  genera l  shape of a l l  loops a t  nearby temperatures.  

Severa l  runs were made a t  t h e  higher temperatures i n  an attempt t o  

complete those  loops which c l o s e  a t  pressures  below 500 p s i a .  With an 

apparatus of the  type used i n  t h i s  work, t h e  problem i s  somewhat d i f -  

f i c u l t .  A t  a given temperature, say 3l.5", pure hydrogen i s  charged 

i n t o  t h e  c e l l  and a predetermined amount of l i q u i d  i s  condensed. A t  
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t h i s  point  t h e  contents  of t h e  c e l l  are represented by t h e  point  i n  Fig.  

26 a t  which t h e  31.3' loop touches t h e  l e f t  edge of t h e  diagram. Helium 

i s  added t o  t h e  loop and t h e  pressure rises, and a curve of t o t a l  com- 

pos i t i on  vs.  pressure for t h e  mixture extends i n t o  t h e  loop. 

t h e r  addi t ion  of helium, t h e  pressure and t o t a l  helium content i n -  

crease;  however t h e  path followed by t h e  l i n e  represent ing t o t a l  composi- 

t i o n  i s  not accura te ly  known, and a two-phase mixture w i l l  e x i s t  only 

as long as t h e  curve remains ins ide  t h e  loop. 

passes out of t h e  loop and in to  a s i n g l e  phase region before  t h e  c r i -  

t i c a l  pressure i s  reached. 

u id  had evaporated ( e x i t  on the  vapor s i d e ) ,  or t h a t  t h e  c e l l  became 

swamped with l i q u i d  (ex i t  on the l i q u i d  s i d e ) .  

t h e  c e l l  apparent ly  became swamped with l i q u i d  a t  a pressure above 220 

ps i a ,  s ince  t h e  samples taken a t  higher pressure showed t h e  same com- 

pos i t i on  f o r  l i q u i d  ar?d vapor, although t h e  compositions f e l l  along a 

smooth curve with t h e  l i q u i d  data a t  lower pressures .  The same phe- 

nomenon was observed a t  31.9" and 308.5 ps i a .  

With fur- 

It may happen t h a t  it 

This would mean e i t h e r  t h a t  a l l  of t h e  l i q -  

During t h e  run a t  32.5" 

I n  general  t h e r e  i s  reasonable agreement between t h e  c r i t i c a l  curves 

obtained on each of t h e  t h r e e  diagrams (P-x, T-x, and P-T). The c r i -  

t i c a l  po in ts  ind ica ted  on these diagrams a r e  estimated t o  be accura te  

t o  wi th in  k10 p s i ,  90.2'K, or 50.2 mole percent .  



V I I .  ANALYSIS OF EXPERIMENTAL RESULTS 

A .  COMPARISON W I T H  PREVIOUS WORK 

1. General 

The work of Smith32 and of Roel l ig  and Giese33 on t h e  vapor- l iquid 

equilibrium of t h e  hydrogen-helium system 'has been mentioned previously.  

A comparison of t h e i r  r e s u l t s  with t h e  present  work i s  shown i n  F igs .  

32 -33. 

2.  Comparison W i t n  Data of Smith 

O f  t h e  three  isotherm s tudied  by Smith, only t h a t  a t  20.4" was dup- 

l i c a t e d  i n  t h e  present  work. A comparison with Smith 's  r e s u l t s  a t  t h i s  

temperature i s  shown i n  F igs .  32 and 33. The agreement i s  q u i t e  good. 

Smith 's  work shows somewhat more s c a t t e r ,  e spec ia l ly  i n  t h e  vapor phase 

compositions 

To obta in  a comparison with Smith's  work a t  17.4" and 21.8", da ta  

a t  t hese  temperatures were obtained f o r  t h e  present  work by graphica l  

i n t e r p o l a t i o n  of t h e  temperature-composition diagrams of Figs .  34 and 

35. A p l o t  o f t h i s  da ta  on a l a r g e  s c a l e  was used f o r  t h i s  i n t e rpo la -  

t i o n .  The comparison i s  shown i n  Figs .  34 and 35. The agreement i s  

not a s  good a s  t h a t  a t  20.4". 

curves through Smith's  da t a  agree reasonably we l l  with isotherms of 

t h e  present  work which a r e  about 0 . 3  t o  0.4"K lower than  t h e  tempera- 

t u r e s  reported by Smith, This discrepancy may be due t o  t h e  method of 

A study of t h e  da t a  i n d i c a t e s  t h a t  smooth 
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temperature measurement used by Smith. He reported temperatures meas- 

ured with a s ing le  copper-constantan thermocouple referenced i n  an i c e  

bath.  The s e n s i t i v i t y  of copper-constantan thermocouples a t  l i q u i d  hy- 

drogen temperatures i s  about 5 pv/degree, and t h e  t o t a l  EMF ( reference 

junct ion a t  O°C) i s  over 6000 pv. 

temperature e r ro r  of about 0.2"K. 

would requi re  very p r e c i s e  c a l i b r a t i o n  of t he  thermocouple and very ac- 

cura te  measurement of t h e  EMF'. To determine t h e  temperature t o  wi th in  

+O.0lo, as reported by Smith, the EMF would have t o  be measured t o  within 

kO.05 pv, or  1t0.0084 of the  t o t a l .  

questionable.  

couples a r e  r a r e l y  f r e e  of s t r ay  EMF'S due t o  inhomogeneities t o  b e t t e r  

than  1 or 2 pv i n  5000. 

An e r r o r  of 1 pv would introduce a 

Accurate temperature measurement 

Even then, t h e  r e s u l t s  would be 

Scott45 states t h a t  t h e  bes t  copper-constantan thermo- 

3. Comparison With Data of Roellig and Giese 

Comparison with t h e  data  of Roel l ig  and Giese cannot be made d i -  

r e c t l y .  They reported nine separate  points ,  giving only t h e  tempera- 

t u r e ,  p a r t i a l  pressure of helium i n  t h e  vapor, and mole percent helium 

i n  t h e  l i qu id .  

mined f o r  each point by reversing t h e  ca lcu la t ions  they used t o  obtain 

t h e  values reported.  

Tota l  pressure and vapor phase composition can be de t e r -  

To make t h e  comparison given here,  t h e  values  of temperature c a l -  

cu la ted  by Eckert and Prausnitz3? have been used with t h e  da ta  of Roel l ig  

and Giese. Roel l ig  and Giese measured temperatures ind i r ec t ly ,  using 
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experimentally determined l i q u i d  and vapor phase compositions and as- 

suming Raoul t ' s  law v a l i d  f o r  t h e  l i q u i d  and i d e a l  gas behavior for t h e  

vapor. They obtained a value f o r  t he  vapor pressure  of hydrogen and 

took t h e  temperature from t h e  hydrogen vapor pressure  curve.  Eckert 

and Prausni tz  observed t h a t  t h e  assumption of Raou l t ' s  law and i d e a l  

vapor leads t o  s i g n i f i c a n t  e r r o r s  i n  t h e  temperature.  Using a r igorous 

thermodynamic equation i n  place of t h e  i d e a l  r e l a t i o n ,  they  reca lcu-  

l a t e d  t h e  temperatures, assuming only t h a t  l i q u i d  hydrogen i s  i n  compres- 

s i b l e  and t h a t  t h e  Lewis-Randall r u l e  can be used t o  determine t h e  

fugac i ty  of hydrogen i n  t h e  l i q u i d .  The r e s u l t i n g  temperatures d i f f e r  

from those  of Roel l ig  and Giese by as much a s  2.7'K. Wnile t h e s e  tem- 

pera tures  a r e  probabiy more accurate  than  those a r r ived  a t  by Roel l ig  

and Giese, they w i l l  s t i l l  r e f l e c t  any e r r o r s  i n  t h e  determination of 

t h e  phase compositions. 

Tne da ta  a re  l i s t e d  i n  Table 11, showing both  temperatures f o r  each 

poin t .  Vapor phase compositions and t o t a l  p ressure  were ca l cu la t ed  by 

t h i s  author from t h e  published da ta  of Roel l ig  and Giese.  

The l i qu id  phase compositions f o r  t n e  two temperatures 20.6 ar,d 

20.9" (ca lcu la ted  by Eckert and P rausn i t z )  a r e  p l o t t e d  i n  Fig.  32-  The 

lack  of agreement i s  apparent.  

and 25.9" a r e  p lo t t ed  i n  Fig.  34, and agree reasonably we l l  wi th  t h e  

26.0" isotherm of t h i s  work. 

The t h r e e  l i q u i d  poin ts  a t  26.0, 25.6, 



TABLE I1 

DATA OF ROELLIG AND GIESE 

l'emp, 'K 
Pressure Liquid Mole 4 Vapor Mole % 

noei i ig  ana Eckert and 
Giese Prausni t z (Psis 1 He H2 He H2 

16.3 

19.8 

21.6 
22.3 
26.8 
27.3 
28.6 

17.7 

20.7 

16.1 
17.2 
18.6 

20.6 
20.9 
26.0 
25.6 
25.9 

20.3 

30.9 
61.4 

114.3 
42.5 
74.6 

135.8 
96.8 

137.6 
187.0 

1.26 
3.80 

11.05 
0.69 
3.01 
8.35 
0.59 
1.03 
2.89 

98.74 
96.20 
88.95 
99.31 
96.99 
91.65 
99.41 
98.97 
97.11 

88.7 
89.8 
89.9 
61.1 
72.3 
82.7 
31.1 

51.0 
45.2 

11.3 
10.2 
10.1 
38.9 
27.7 
17.3 
58.9 
53.8 
49.0 

The vapor phase compositions f o r  t h e  above f i v e  poin ts ,  along with 

t h a t  of t h e  17.2" point  a r e  shown i n  Figs .  33 and 35. Thes show ex- 

c e l l e n t  agreement with t h e  present work. 

Roel l ig  and Giese concluded from t h e i r  l i m i t e d  da ta  t h a t  t h e  solu-  

b i l i t y  of helium i n  t h e  l i qu id  increases  with a decrease i n  temperature- 

j u s t  t h e  opposi te  of t h e  behavior observed i n  t h i s  work. 

B . THERMODYNAMIC TREATMENT 

1. Previous Work 

The o r i g i n a l  work of Smith32 on t h e  hydrogen-helium system includes 

a review of some thermodynamic r e l a t i o n s  used t o  c a l c u l a t e  t h e  fuga- 

c i t i e s  of components i n  vapor and l i q u i d  mixtures .  

Smith appl ied seve ra l  of these  methods t o  t h e  ca l cu la t ion  of t h e  

f u g a c i t i e s  of each component i n  t h e  vapor, and compared t h e  r e s u l t s  t o  
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i d e a l  behavior described by Henry's l a w  and Raoul t ' s  l a w .  Ris c a l -  

cu la t ions  a r e  somewhat d i f f i c u l t  t o  fol low.  He f i r s t  ca l cu la t ed  t h e  

helium vapor phase fugac i ty  by t h e  Lewis-Randall r u l e ;  and then  c a l -  

cu la ted  t h e  fugac i ty  of t h e  mixture, using a two constant  v i r i a l  equa- 

t i o n  of s t a t e .  He used t h e s e  r e s u l t s  t o  c a l c u l a t e  t h e  vapor phase 

fugac i ty  of hydrogen, using an equation r e l a t i n g  component f u g a c i t i e s  

t o  mole f r ac t ions  and t o t a l  fugac i ty .  He d id  not t a k e  t h e  obvious 

s t e p  of ca l cu la t ing  t h e  fugac i ty  of hydrogen i n  t h e  l i q u i d  and com- 

par ing it t o  the ca lcu la ted  vapor phase fugac i ty .  

Brazinsky and G ~ t t f r i e d ~ ~  have pointed out t h a t  Smith's  vapor 

phase hydrogen f u g a c i t i e s  a r e  i n  poor agreement with t h e  l i q u i d  phase 

f u g a c i t i e s  ca lcu la ted  from t h e  Lewis-Randall r u l e .  They concluded t h a t  

t h e  disagreement was due t o  inco r rec t  values  of t h e  second v i r i a l  co- 

e f f i c i e n t  f o r  hydrogen-helium mixtures used by Smith. They reca lcu-  

l a t e d  t h e  hydrogen vapor phase f u g a c i t i e s ,  using b e t t e r  values  f o r  

t h e  v i r i a l  constants,  and obtained reasonable agreement between t h e s e  

values  and t h e  l i q u i d  f u g a c i t i e s  ca l cu la t ed  from t h e  Lewis-Randall 

r u l e .  

very in sens i t i ve  t e s t ,  as f i v e -  o r  t en - fo ld  changes i n  t h e  helium con- 

t e n t  of t h e  l i qu id  w i l l  not a f f e c t  t h e  r e s u l t s .  

Eckert and P r a ~ s n i t z ~ ~  have pointed out however t h a t  t h i s  i s  a 

2 .  Other Theore t ica l  Considerations 

The tes t  performed by Brazinsky and Go t t f r i ed  i s  a comparison of 

t h e  ca lcu la ted  vapor and l i q u i d  phase f u g a c i t i e s  of a s i n g l e  componer,t 



a t  separa te  pressure-temperature po in t s ;  t hese  should be equal f o r  a 

system i n  equilibrium. 

i s  based on t h e  Gibbs r e l a t i o n  between p a r t i a l  modal f r e e  energies  of 

t h e  components i n  a s i n g l e  phase: 

Another type of commonly used consis tency t e s t  

Many v a r i a t i o n s  of t h i s  r e l a t i o n  have been developed and used, i n  both 

d i f f e r e n t i a l  and i n t e g r a l  forms, t o  c o r r e l a t e  and predic t  vapor- l iquid 

equilibrium data .  

Duhem equation, v a l i d  a t  constant pressure  and temperature: 

Perhaps t h e  most commonly used form i s  t h e  Gibbs- 

This  r e l a t i o n  may also be wr i t ten  i n  terms of f u g a c i t i e s  or a c t i v i t y  co- 

e f f i c i e n t s :  

Smith in tegra ted  t h e  r e l a t i o n  (3) over a range of pressures  a t  con- 

s t a n t  temperature, using h i s  ca lcu la ted  vapor phase f u g a c i t i e s .  He 

s t a t e d  t h a t  t h e  r e s u l t s  agreed t o  wi th in  lo$, although they a r e  not 

included i n  h i s  work. 

The d i f f e r e n t i a l  r e l a t i o n s  (3) and ( 4 )  along with seve ra l  semi- 

empir ical  i n t eg ra t ed  forms associated with t h e  names of Margules, 
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Van Laar, Scatchard, Redlich, e t c . ,  have been used f requent ly  f o r  pre-  

d i c t i n g  co r re l a t ing  t h e  behavior of b inary  systems. I b l  and Dodge, 

T h i j ~ s e n , ~ ~  and Adler, -- e t  

Gibbs-Duhem equation i s  not an exact r e l a t i o n  when appl ied  t o  b inary  

systems, since,  a t  constant  temperature and pressure,  t h e  equilibrium 

phase compositions a r e  inva r i an t ;  they  have developed more exact r e l a -  

t i o n s  which can be appl ied  e i t h e r  t o  isothermal  or  t o  i soba r i c  da ta .  

Other papers 67-69 published wi th in  t h e  l a s t  10 years  have a l s o  d e a l t  

with t h i s  subjec t .  

64 

and o thers  have pointed out t h a t  t h e  

Most of the  r e l a t i o n s  developed f o r  t r e a t i n g  isothermal  o r  i so -  

b a r i c  da ta  requi re  some knowledge of t he  p a r t i a l  molal p rope r t i e s  of 

each component i n  t h e  mixture. Such da ta  a r e  d i f f i c u l t  t o  evaluate  

f o r  t h e  hydrogen-helium system, e spec ia l ly  f o r  t h e  l i q u i d  phase. The 

problem i s  f u r t h e r  complicated by t h e  f a c t  t h a t  t h e  general ized r e -  

duced property t a b l e s  developed by Eougen, Lyderson, -- e t  a l . ,  have been 

found t o  show a poor c o r r e l a t i o n  f o r  both hydrogen and helium; t h i s  

r u l e s  out  t h e  use of psuedo-reduced c r i t i c a l  cons tan ts  f o r  es t imat ing 

mixture proper t ies .  

A t  t h e  present time it appears t h a t  t h e  use of equations of s t a t e  

f o r  hydrogen and helium and t h e i r  mixtures would o f f e r  t h e  bes t  means 

of ob ta in ing  a r igorous thermodynamic consis tency t e s t  f o r  t h e  da ta  

presented here.  Such an inves t iga t ion  i s  beyond t h e  scope of t h i s  

work. 



APPENDIX A 

EXPERIMENTAI, DATA 

The t a b l e s  below include a s m a r y  of a l l  experimental da t a  re- 

corded during t h i s  work. 

t a b l e  headings : 

R u n :  

The following notat ions are  used i n  t h e  

F i r s t  number and l e t t e r  give day and month ( L  f o r  July,  
A f o r  August); second and t h i r d  numbers are sample 
b o t t l e  numbers f o r  l iqu id  and vapor, respectively.  These 
numbers are recorded on t h e  graphs of t h e  mass spectrom- 
e t e r  analyses which are on f i l e  i n  t h e  Department of 
Chemical and Metallurgical Engineering Instrumental 
Analysis Laboratory. 

To : 

T i  : 

T2 : 

T3 : 

T4 : 

T5 : 

TCL: 

Pres : 

Time : 

MSL: 

Liq: 

MSV : 

Vap : 

Temperature indicated by platinum res i s tance  thermometer, "K. 

Temperature at Thermocouple No. 1, O K .  

Temperature at Thermocouple No. 2, OK. 

Temperature at Thermocouple No. 3, O K .  

Temperature at Thermocouple No. 4, "K. 

Temperature a t  Thermocouple No .  5, "K. 

Temperature cont ro l  limits, f"K. 

Equilibrium pressure, ps ia .  

Total  time of vapor rec i rcu la t ion .  

Instrumental Analysis Laboratory log  number f o r  l i qu id  
sample analysis .  

Mole percent helium i n  l iqu id  

Instrumental Analysis Laboratory log  number f o r  vapor 
sample analysis .  

Mole percent helium i n  vapor. 
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